Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
ACS Nano ; 18(11): 8531-8545, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38456901

Programmed death-ligand 1 (PD-L1) is a promising target for cancer immunotherapy due to its ability to inhibit T cell activation; however, its expression on various noncancer cells may cause on-target off-tumor toxicity when designing PD-L1-targeting Chimeric Antigen Receptor (CAR) T cell therapies. Combining rational design and directed evolution of the human fibronectin-derived monobody scaffold, "PDbody" was engineered to bind to PD-L1 with a preference for a slightly lower pH, which is typical in the tumor microenvironment. PDbody was further utilized as a CAR to target the PD-L1-expressing triple negative MDA-MB-231 breast cancer cell line. To mitigate on-target off-tumor toxicity associated with targeting PD-L1, a Cluster of Differentiation 19 (CD19)-recognizing SynNotch IF THEN gate was integrated into the system. This CD19-SynNotch PDbody-CAR system was then expressed in primary human T cells to target CD19-expressing MDA-MB-231 cancer cells. These CD19-SynNotch PDbody-CAR T cells demonstrated both specificity and efficacy in vitro, accurately eradicating cancer targets in cytotoxicity assays. Moreover, in an in vivo bilateral murine tumor model, they exhibited the capability to effectively restrain tumor growth. Overall, CD19-SynNotch PDbody-CAR T cells represent a distinct development over previously published designs due to their increased efficacy, proliferative capability, and mitigation of off-tumor toxicity for solid tumor treatment.


B7-H1 Antigen , Receptors, Antigen, T-Cell , Humans , Mice , Animals , Receptors, Antigen, T-Cell/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Ligands , Cell Line, Tumor , T-Lymphocytes , Immunotherapy, Adoptive
2.
Nat Commun ; 13(1): 7933, 2022 12 24.
Article En | MEDLINE | ID: mdl-36566209

Genome architecture and organization play critical roles in cell life. However, it remains largely unknown how genomic loci are dynamically coordinated to regulate gene expression and determine cell fate at the single cell level. We have developed an inducible system which allows Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies (SIMBA) in living cells. In SIMBA, the human heterochromatin protein 1α (HP1α) is fused to mCherry and FRB, which can be induced to form biomolecular assemblies (BAs) with FKBP-scFv, guided to specific genomic loci by a nuclease-defective Cas9 (dCas9) or a transcriptional factor (TF) carrying tandem repeats of SunTag. The induced BAs can not only enhance the imaging signals at target genomic loci using a single sgRNA, either at repetitive or non-repetitive sequences, but also recruit epigenetic modulators such as histone methyltransferase SUV39H1 to locally repress transcription. As such, SIMBA can be applied to simultaneously visualize and manipulate, in principle, any genomic locus with controllable timing in living cells.


Genetic Loci , Genome, Human , Molecular Imaging , Humans , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Transcription Factors/genetics
3.
Nat Commun ; 12(1): 5031, 2021 08 19.
Article En | MEDLINE | ID: mdl-34413312

The limited sensitivity of Förster Resonance Energy Transfer (FRET) biosensors hinders their broader applications. Here, we develop an approach integrating high-throughput FRET sorting and next-generation sequencing (FRET-Seq) to identify sensitive biosensors with varying substrate sequences from large-scale libraries directly in mammalian cells, utilizing the design of self-activating FRET (saFRET) biosensor. The resulting biosensors of Fyn and ZAP70 kinases exhibit enhanced performance and enable the dynamic imaging of T-cell activation mediated by T cell receptor (TCR) or chimeric antigen receptor (CAR), revealing a highly organized ZAP70 subcellular activity pattern upon TCR but not CAR engagement. The ZAP70 biosensor elucidates the role of immunoreceptor tyrosine-based activation motif (ITAM) in affecting ZAP70 activation to regulate CAR functions. A saFRET biosensor-based high-throughput drug screening (saFRET-HTDS) assay further enables the identification of an FDA-approved cancer drug, Sunitinib, that can be repurposed to inhibit ZAP70 activity and autoimmune-disease-related T-cell activation.


Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , High-Throughput Nucleotide Sequencing/methods , Phosphotransferases/metabolism , Cells, Cultured , Humans , Protein Engineering/methods , Proto-Oncogene Proteins c-fyn/metabolism , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
4.
Front Mol Biosci ; 8: 618068, 2021.
Article En | MEDLINE | ID: mdl-33829039

Poxviruses are dangerous pathogens, which can cause fatal infection in unvaccinated individuals. The causative agent of smallpox in humans, variola virus, is closely related to the bovine vaccinia virus, yet the molecular basis of their selectivity is currently incompletely understood. Here, we examine the role of the electrostatics in the selectivity of the smallpox protein SPICE and vaccinia protein VCP toward the human and bovine complement protein C3b, a key component of the complement immune response. Electrostatic calculations, in-silico alanine-scan and electrostatic hotspot analysis, as introduced by Kieslich and Morikis (PLoS Comput. Biol. 2012), are used to assess the electrostatic complementarity and to identify sites resistant to local perturbation where the electrostatic potential is likely to be evolutionary conserved. The calculations suggest that the bovine C3b is electrostatically prone to selectively bind its VCP ligand. On the other hand, the human isoform of C3b exhibits a lower electrostatic complementarity toward its SPICE ligand. Yet, the human C3b displays a highly preserved electrostatic core, which suggests that this isoform could be less selective in binding different ligands like SPICE and the human Factor H. This is supported by experimental cofactor activity assays revealing that the human C3b is prone to bind both SPICE and Factor H, which exhibit diverse electrostatic properties. Additional investigations considering mutants of SPICE and VCP that revert their selectivity reveal an "electrostatic switch" into the central modules of the ligands, supporting the critical role of the electrostatics in the selectivity. Taken together, these evidences provide insights into the selectivity mechanism of the complement regulator proteins encoded by the variola and vaccinia viruses to circumvent the complement immunity and exert their pathogenic action. These fundamental aspects are valuable for the development of novel vaccines and therapeutic strategies.

5.
Sci Rep ; 11(1): 4549, 2021 02 25.
Article En | MEDLINE | ID: mdl-33633185

Central nervous system (CNS) injury and infection can result in profound tissue remodeling in the brain, the mechanism and purpose of which is poorly understood. Infection with the protozoan parasite Toxoplasma gondii causes chronic infection and inflammation in the brain parenchyma. Control of parasite replication requires the continuous presence of IFNγ-producing T cells to keep T. gondii in its slowly replicating cyst form. During infection, a network of extracellular matrix fibers, revealed using multiphoton microscopy, forms in the brain. The origin and composition of these structures are unknown but the fibers have been observed to act as a substrate for migrating T cells. In this study, we show a critical regulator of extracellular matrix (ECM) remodeling, Secreted Protein, Acidic, Rich in Cysteine (SPARC), is upregulated in the brain during the early phases of infection in the frontal cortex. In the absence of SPARC, a reduced and disordered fibrous network, increased parasite burden, and reduced antigen-specific T cell entry into the brain points to a role for SPARC in T cell recruitment to and migration within the brain. We also report SPARC can directly bind to CCR7 ligands CCL19 and CCL21 but not CXCL10, and enhance migration toward a chemokine gradient. Measurement of T cell behavior points to tissue remodeling being important for access of immune cells to the brain and facilitating cellular locomotion. Together, these data identify SPARC as an important regulatory component of immune cell trafficking and access to the inflamed CNS.


Extracellular Matrix/metabolism , Osteonectin/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toxoplasma/physiology , Toxoplasmosis, Cerebral/etiology , Toxoplasmosis, Cerebral/metabolism , Animals , Antigens, Protozoan/immunology , Biomarkers , Brain/blood supply , Brain/immunology , Brain/metabolism , Brain/parasitology , Cell Movement/immunology , Chemokine CCL21/metabolism , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Gene Expression Regulation , Host-Parasite Interactions/immunology , Mice , Mice, Knockout , Neurons/metabolism , Osteonectin/genetics , Protein Binding , Receptors, CCR7
6.
Article En | MEDLINE | ID: mdl-33519290

Liquid-liquid phase separation is increasingly recognized as a phenomenon that affects cell behavior. For example, phase separation of transcription factors and coactivators has been shown to drive efficient transcription. For many years, phase separation of intracellular components has been observed; however, only recently have researchers been able to garner functional significance from such events. Inspired from recent literature that describes phase separation of chromatin in a histone-dependent manner, we review the role and effect of phase separation and histone epigenetics in regulating the genome and discuss how these phenomena can be leveraged to control cell behavior.

7.
ACS Med Chem Lett ; 11(5): 1054-1059, 2020 May 14.
Article En | MEDLINE | ID: mdl-32435425

C3d is a hallmark protein of the complement system, whose presence is critical to measure the progression of several immune diseases. Here, we propose to directly target C3d through small peptides mimicking the binding of its natural ligand, the complement regulator Factor H (FH). Through iterative computational analysis and binding affinity experiments, we establish a rationale for the structure-based design of FH-inspired peptides, leading to low-micromolar affinity for C3d and stable binding over microsecond-length simulations. Our FH-inspired peptides call now for further optimization toward high-affinity binding and suggest that small peptides are promising as novel C3d biomarkers and therapeutic tools.

8.
Cell Chem Biol ; 26(5): 662-673.e7, 2019 05 16.
Article En | MEDLINE | ID: mdl-30827936

The G protein-coupled receptor (GPCR) CXCR4 is a co-receptor for HIV and is involved in cancers and autoimmune diseases. We characterized five purine or quinazoline core polyamine pharmacophores used for targeting CXCR4 dysregulation in diseases. All were neutral antagonists for wild-type CXCR4 and two were biased antagonists with effects on ß-arrestin-2 only at high concentrations. These compounds displayed various activities for a constitutively active mutant (CAM). We use the IT1t-CXCR4 crystal structure and molecular dynamics (MD) simulations to develop two hypotheses for the activation of the N1193.35A CAM. The N1193.35A mutation facilitates increased coupling of TM helices III and VI. IT1t deactivates the CAM by disrupting the coupling between TM helices III and VI, mediated primarily by residue F872.53. Mutants of F872.53 in N1193.35A CXCR4 precluded constitutive signaling and prevented inverse agonism. This work characterizes CXCR4 ligands and provides a mechanism for N1193.35A constitutive activation.


Molecular Dynamics Simulation , Receptors, CXCR4/antagonists & inhibitors , Small Molecule Libraries/metabolism , Benzylamines , Chemokine CXCL12/pharmacology , Cyclams , HEK293 Cells , HIV Infections/metabolism , HIV Infections/pathology , HIV Infections/virology , HIV-1/drug effects , Heterocyclic Compounds/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Protein Structure, Tertiary , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , beta-Arrestin 2/metabolism
9.
Biophys J ; 116(2): 215-226, 2019 01 22.
Article En | MEDLINE | ID: mdl-30616835

A single nucleotide polymorphism, tyrosine at position 402 to histidine (Y402H), within the gene encoding complement factor H (FH) predisposes individuals to acquiring age-related macular degeneration (AMD) after aging. This polymorphism occurs in short consensus repeat (SCR) 7 of FH and results in decreased binding affinity of SCR6-8 for heparin. As FH is responsible for regulating the complement system, decreased affinity for heparin results in decreased regulation on surfaces of self. To understand the involvement of the Y402H polymorphism in AMD, we leverage methods from bioinformatics and computational biophysics to quantify structural and dynamical differences between SCR7 isoforms that contribute to decreased pattern recognition in SCR7H402. Our data from molecular and Brownian dynamics simulations suggest a revised mechanism for decreased heparin binding. In this model, transient contacts not observed in structures for SCR7 are predicted to occur in molecular dynamics simulations between coevolved residues Y402 and I412, stabilizing SCR7Y402 in a conformation that promotes association with heparin. H402 in the risk isoform is less likely to form a contact with I412 and samples a larger conformational space than Y402. We observe energy minima for sidechains of Y402 and R404 from SCR7Y402 that are predicted to associate with heparin at a rate constant faster than energy minima for sidechains of H402 and R404 from SCR7H402. As both carbohydrate density and degree of sulfation decrease with age in Bruch's membrane of the macula, the decreased heparin recognition of SCR7H402 may contribute to the pathogenesis of AMD.


Complement Factor H/chemistry , Macular Degeneration/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation, Missense , Binding Sites , Complement Factor H/genetics , Complement Factor H/metabolism , Heparin/chemistry , Humans , Protein Binding
10.
ACS Omega ; 3(6): 6427-6438, 2018 Jun 30.
Article En | MEDLINE | ID: mdl-30221234

The complement system is our first line of defense against foreign pathogens, but when it is not properly regulated, complement is implicated in the pathology of several autoimmune and inflammatory disorders. Compstatin is a peptidic complement inhibitor that acts by blocking the cleavage of complement protein C3 to the proinflammatory fragment C3a and opsonin fragment C3b. In this study, we aim to identify druglike small-molecule complement inhibitors with physicochemical, geometric, and binding properties similar to those of compstatin. We employed two approaches using various high-throughput virtual screening methods, which incorporate molecular dynamics (MD) simulations, pharmacophore model design, energy calculations, and molecular docking and scoring. We have generated a library of 274 chemical compounds with computationally predicted binding affinities for the compstatin binding site of C3. We have tested subsets of these chemical compounds experimentally for complement inhibitory activity, using hemolytic assays, and for binding affinity, using microscale thermophoresis. As a result, although none of the compounds showed inhibitory activity, compound 29 was identified to exhibit weak competitive binding against a potent compstatin analogue, therefore validating our computational approaches. Additional docking and MD simulation studies suggest that compound 29 interacts with C3 residues, which have been shown to be important in binding of compstatin to the C3c fragment of C3. Compound 29 is amenable to physicochemical optimization to acquire inhibitory properties. Additionally, it is possible that some of the untested compounds will demonstrate binding and inhibition in future experimental studies.

11.
Nanoscale ; 10(27): 13055-13063, 2018 Jul 13.
Article En | MEDLINE | ID: mdl-29952390

The spherical form (s-form) of a genetically-modified gold-binding M13 bacteriophage was investigated as a scaffold for gold synthesis. Repeated mixing of the phage with chloroform caused a 15-fold contraction from a nearly one micron long filament to an approximately 60 nm diameter spheroid. The geometry of the viral template and the helicity of its major coat protein were monitored throughout the transformation process using electron microscopy and circular dichroism spectroscopy, respectively. The transformed virus, which retained both its gold-binding and mineralization properties, was used to assemble gold colloid clusters and synthesize gold nanostructures. Spheroid-templated gold synthesis products differed in morphology from filament-templated ones. Spike-like structures protruded from the spherical template while isotropic particles developed on the filamentous template. Using inductively coupled plasma-mass spectroscopy (ICP-MS), gold ion adsorption was found to be comparatively high for the gold-binding M13 spheroid, and likely contributed to the dissimilar gold morphology. Template contraction was believed to modify the density, as well as the avidity of gold-binding peptides on the scaffold surface. The use of the s-form of the M13 bacteriophage significantly expands the templating capabilities of this viral platform and introduces the potential for further morphological control of a variety of inorganic material systems.

12.
Biophys J ; 112(9): 1761-1766, 2017 May 09.
Article En | MEDLINE | ID: mdl-28494947

Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.


Proteins/chemistry , Software , Static Electricity , Alanine/chemistry , Alanine/metabolism , Algorithms , Internet , Mutation , Proteins/genetics , Proteins/metabolism , Thermodynamics
13.
Mol Immunol ; 85: 137-147, 2017 05.
Article En | MEDLINE | ID: mdl-28254726

C3b, the central component of the alternative pathway (AP) of the complement system, coexists as a mixture of conformations in solution. These conformational changes can affect interactions with other proteins and complement regulators. Here we combine a computational model for electrostatic interactions within C3b with molecular imaging to study the conformation of C3b. The computational analysis shows that the TED domain in C3b is tethered ionically to the macroglobulin (MG) ring. Monovalent counterion concentration affects the magnitude of electrostatic forces anchoring the TED domain to the rest of the C3b molecule in a thermodynamic model. This is confirmed by observing NaCl concentration dependent conformational changes using single molecule electron microscopy (EM). We show that the displacement of the TED domain is compatible with C3b binding to Factor B (FB), suggesting that the regulation of the C3bBb convertase could be affected by conditions that promote movement in the TED domain. Our molecular model also predicts mutations that could alter the positioning of the TED domain, including the common R102G polymorphism, a risk variant for developing age-related macular degeneration. The common C3b isoform, C3bS, and the risk isoform, C3bF, show distinct energetic barriers to displacement in the TED that are related to a network of electrostatic interactions at the interface of the TED and MG-ring domains of C3b. These computational predictions agree with experimental evidence that shows differences in conformation observed in C3b isoforms purified from homozygous donors. Altogether, we reveal an ionic, reversible attachment of the TED domain to the MG ring that may influence complement regulation in some mutations and polymorphisms of C3b.


Complement C3b/chemistry , Complement C3b/metabolism , Macular Degeneration/genetics , Models, Molecular , Animals , Complement C3b/genetics , Genetic Predisposition to Disease , Humans , Microscopy, Electron , Polymorphism, Single Nucleotide , Protein Conformation , Protein Domains/physiology , Protein Stability , Thermodynamics
14.
Mol Vis ; 22: 1280-1290, 2016.
Article En | MEDLINE | ID: mdl-27829783

PURPOSE: To redesign a complement-inhibiting peptide with the potential to become a therapeutic for dry and wet age-related macular degeneration (AMD). METHODS: We present a new potent peptide (Peptide 2) of the compstatin family. The peptide is developed by rational design, based on a mechanistic binding hypothesis, and structural and physicochemical properties derived from molecular dynamics (MD) simulation. The inhibitory activity, efficacy, and solubility of Peptide 2 are evaluated using a hemolytic assay, a human RPE cell-based assay, and ultraviolet (UV) absorption properties, respectively, and compared to the respective properties of its parent peptide (Peptide 1). RESULTS: The sequence of Peptide 2 contains an arginine-serine N-terminal extension (a characteristic of parent Peptide 1) and a novel 8-polyethylene glycol (PEG) block C-terminal extension. Peptide 2 has significantly improved aqueous solubility compared to Peptide 1 and comparable complement inhibitory activity. In addition, Peptide 2 is more efficacious in inhibiting complement activation in a cell-based model that mimics the pathobiology of dry AMD. CONCLUSIONS: We have designed a new peptide analog of compstatin that combines N-terminal polar amino acid extensions and C-terminal PEGylation extensions. This peptide demonstrates significantly improved aqueous solubility and complement inhibitory efficacy, compared to the parent peptide. The new peptide overcomes the aggregation limitation for clinical translation of previous compstatin analogs and is a candidate to become a therapeutic for the treatment of AMD.


Complement System Proteins/metabolism , Macular Degeneration/drug therapy , Peptides/therapeutic use , Amino Acid Sequence , Animals , Cell Line , Hemolysis/drug effects , Humans , Inhibitory Concentration 50 , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Rabbits , Solubility
...