Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e10910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304266

RESUMEN

Asynchrony in population abundance can buffer the effects of environmental change leading to greater community and ecosystem stability. Both environmental (abiotic) drivers and species functional (biotic) traits can influence population dynamics leading to asynchrony. However, empirical evidence linking dissimilarity in species traits to abundance asynchrony is limited, especially for understudied taxa such as insects. To fill this knowledge gap, we explored the relationship between pairwise species trait dissimilarity and asynchrony in interannual abundance change between pairs of species for 422 moth, butterfly, and bumblebee species in Great Britain. We also explored patterns differentiating traits that we assumed to capture 'sensitivity to environmental variables' (such as body mass), and traits that may reflect 'diversity in exposure' to environmental conditions and lead to niche partitioning (for example, habitat uses, and intra-annual emergence periods). As expected, species trait dissimilarity calculated overall and for many individual traits representing response and exposure was positively correlated with asynchrony in all three insect groups. We found that 'exposure' traits, especially those relating to the phenology of species, had the strongest relationship with abundance asynchrony from all tested traits. Positive relationships were not simply due to shared evolutionary history leading to similar life-history strategies: detected effects remained significant for most traits after accounting for phylogenetic relationships within models. Our results provide empirical support that dissimilarity in traits linked to species exposure and sensitivity to the environment could be important for temporal dissimilarity in insect abundance. Hence, we suggest that general trait diversity, but especially diversity in 'exposure' traits, could play a significant role in the resilience of insect communities to short-term environmental perturbations through driving asynchrony between species abundances.

2.
Glob Chang Biol ; 21(9): 3313-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26390228

RESUMEN

Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate-driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among-population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space-temperature and time-temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature-mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.


Asunto(s)
Mariposas Diurnas/fisiología , Cambio Climático , Clima , Adaptación Biológica , Animales , Filogenia , Dinámica Poblacional , Estaciones del Año , Temperatura , Reino Unido
3.
Glob Chang Biol ; 20(12): 3859-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24839235

RESUMEN

Invasive alien species (IAS) are considered one of the greatest threats to biodiversity, particularly through their interactions with other drivers of change. Horizon scanning, the systematic examination of future potential threats and opportunities, leading to prioritization of IAS threats is seen as an essential component of IAS management. Our aim was to consider IAS that were likely to impact on native biodiversity but were not yet established in the wild in Great Britain. To achieve this, we developed an approach which coupled consensus methods (which have previously been used for collaboratively identifying priorities in other contexts) with rapid risk assessment. The process involved two distinct phases: Preliminary consultation with experts within five groups (plants, terrestrial invertebrates, freshwater invertebrates, vertebrates and marine species) to derive ranked lists of potential IAS. Consensus-building across expert groups to compile and rank the entire list of potential IAS. Five hundred and ninety-one species not native to Great Britain were considered. Ninety-three of these species were agreed to constitute at least a medium risk (based on score and consensus) with respect to them arriving, establishing and posing a threat to native biodiversity. The quagga mussel, Dreissena rostriformis bugensis, received maximum scores for risk of arrival, establishment and impact; following discussions the unanimous consensus was to rank it in the top position. A further 29 species were considered to constitute a high risk and were grouped according to their ranked risk. The remaining 63 species were considered as medium risk, and included in an unranked long list. The information collated through this novel extension of the consensus method for horizon scanning provides evidence for underpinning and prioritizing management both for the species and, perhaps more importantly, their pathways of arrival. Although our study focused on Great Britain, we suggest that the methods adopted are applicable globally.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Especies Introducidas , Medición de Riesgo , Especificidad de la Especie , Reino Unido
4.
J Appl Ecol ; 51(4): 949-957, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25954052

RESUMEN

Species' distributions are likely to be affected by a combination of environmental drivers. We used a data set of 11 million species occurrence records over the period 1970-2010 to assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain. Groups of species with different predicted sensitivities showed divergent trends, which we interpret in the context of land-use and climatic changes.A diversity of responses was revealed: 260 moth species declined significantly, whereas 160 increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less species-rich, yet more intensively studied taxa.Geographically widespread species, which were predicted to be more sensitive to land use than to climate change, declined significantly in southern Britain, where the cover of urban and arable land has increased.Moths associated with low nitrogen and open environments (based on their larval host plant characteristics) declined most strongly, which is also consistent with a land-use change explanation.Some moths that reach their northern (leading edge) range limit in southern Britain increased, whereas species restricted to northern Britain (trailing edge) declined significantly, consistent with a climate change explanation.Not all species of a given type behaved similarly, suggesting that complex interactions between species' attributes and different combinations of environmental drivers determine frequency of occurrence changes.Synthesis and applications. Our findings are consistent with large-scale responses to climatic and land-use changes, with some species increasing and others decreasing. We suggest that land-use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of moth biodiversity change, acting independently and in combination. Importantly, the diverse responses revealed in this species-rich taxon show that multifaceted conservation strategies are needed to minimize negative biodiversity impacts of multiple environmental changes. We suggest that habitat protection, management and ecological restoration can mitigate combined impacts of land-use change and climate change by providing environments that are suitable for existing populations and also enable species to shift their ranges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA