Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Nat Commun ; 15(1): 3522, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664386

Despite decades of research, the influence of climate on the export of dissolved organic carbon (DOC) from soil remains poorly constrained, adding uncertainty to global carbon models. The limited temporal range of contemporary monitoring data, ongoing climate reorganisation and confounding anthropogenic activities muddy the waters further. Here, we reconstruct DOC leaching over the last ~14,000 years using alpine environmental archives (two speleothems and one lake sediment core) across 4° of latitude from Te Waipounamu/South Island of Aotearoa New Zealand. We selected broadly comparable palaeoenvironmental archives in mountainous catchments, free of anthropogenically-induced landscape changes prior to ~1200 C.E. We show that warmer temperatures resulted in increased allochthonous DOC export through the Holocene, most notably during the Holocene Climatic Optimum (HCO), which was some 1.5-2.5 °C warmer than the late pre-industrial period-then decreased during the cooler mid-Holocene. We propose that temperature exerted the key control on the observed doubling to tripling of soil DOC export during the HCO, presumably via temperature-mediated changes in vegetative soil C inputs and microbial degradation rates. Future warming may accelerate DOC export from mountainous catchments, with implications for the global carbon cycle and water quality.

2.
Sci Total Environ ; 917: 170478, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38301780

Denitrifying woodchip bioreactors (DBRs) are an established nitrate mitigation technology, but uncertainty remains on their viability for phosphorus (P) removal due to inconsistent source-sink behaviour in field trials. We investigated whether iron (Fe) redox cycling could be the missing link needed to explain P dynamics in these systems. A pilot-scale DBR (Aotearoa New Zealand) was monitored for the first two drainage seasons (2017-2018), with supplemental in-field measurements of reduced solutes (Fe2+, HS-/H2S) and their conjugate oxidised species (Fe3+/SO42-) made in 2021 to constrain within-reactor redox gradients. Consistent with thermodynamics, the dissolution of Fe3+(s) to Fe2+(aq) within the DBR sequentially followed O2, NO3- and MnO2(s) reduction, but occurred before SO42- reduction. Monitoring of inlet and outlet chemistry revealed tight coupling between Fe and P (inlet R2 0.94, outlet R2 0.85), but distinct dynamics between drainage seasons. In season one, outlet P exceeded inlet P (net P source), and coincided with elevated outlet Fe2+, but at ⁓50 % lower P concentrations relative to inlet Fe:P ratios. In season 2 the reactor became a net P sink, coinciding with declining outlet Fe2+ concentrations (indicating exhaustion of Fe3+(s) hydroxides and associated P). In order to characterize P removal under varying source dynamics (i.e. inflows vs in-situ P releases), we used the inlet Fe vs P relationship to estimate P binding to colloidal Fe (hydr)oxide surfaces under oxic conditions, and the outlet Fe2+ concentration to estimate in-situ P releases associated with Fe (hydr)oxide reduction. Inferred P-removal rates were highest early in season 1 (k = 0.60 g P m3 d-1; 75-100 % removal), declining significantly thereafter (k = 0.01 ± 0.02 g P m3 d-1; ca. 3-67 % removal). These calculations suggest that microbiological P removal in DBRs can occur at comparable magnitudes to nitrate removal by denitrification, depending mainly on P availability and hydraulic retention efficiency.


Nitrates , Phosphorus , Manganese Compounds , Denitrification , Oxides , Bioreactors , Nitrogen
3.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Article En | MEDLINE | ID: mdl-38273563

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Ecosystem , Groundwater , Biodiversity , Fresh Water , Environmental Pollution
4.
ACS Omega ; 7(13): 10864-10876, 2022 Apr 05.
Article En | MEDLINE | ID: mdl-35415374

Diffusive gradients in thin films (DGTs) have been established as useful tools for the determination of nitrate, phosphate, trace metals, and organic concentrations. General use of DGTs, however, is limited by the subsequent requirement for laboratory analysis. To increase the uptake of DGT as a tool for routine monitoring by nonspecialists, not researchers alone, methods for in-field analysis are required. Incorporation of color reagents into the binding layer, or as the binding layer, could enable the easy and accurate determination of analyte concentrations in-field. Here, we sought to develop a chitosan-stabilized silver nanoparticle (AuNP) suspension liquid-binding layer which developed color on exposure to nitrite, combined with an Fe(0)-impregnated poly-2-acrylamido-2-methyl-1-propanesulfonic acid/acrylamide copolymer hydrogel [Fe(0)-p(AMPS/AMA)] for the reduction of nitrate. The AuNP-chitosan suspension was housed in a 3D designed and printed DGT base, with a volume of 2 mL, for use with the standard DGT solution probe caps. A dialysis membrane with a molecular weight cutoff of <15 kDa was used, as part of the material diffusion layer, to ensure that the AuNP-chitosan did not diffuse through to the bulk solution. This synthesized AuNP-chitosan provided quantitative nitrite concentrations (0 to 1000 mg L-1) and masses (145 µg) in laboratory-based color development studies. An Fe(III)-impregnated poly-2-acrylamido-2-methyl-1-propanesulfonic acid/acrylamide copolymer hydrogel [Fe(III)-p(AMPS/AMA)] was developed (10% AMPS, and 90% AMA), which was treated with NaBH4 to form an Fe(0)-p(AMPS/AMA) hydrogel. The Fe(0)-p(AMPS/AMA) hydrogel quantitatively reduced nitrate to nitrite. The total nitrite mass produced was ∼110 µg, from nitrate. The diffusional characteristics of nitrite and nitrate through the Fe(III)-p(AMPS/AMA) and dialysis membrane were 1.40 × 10-5 and 1.40 × 10-5 and 5.05 × 10-6 and 5.15 × 10-6 cm2 s-1 at 25 °C respectively. The Fe(0)-hydrogel and AuNP-chitosan suspension operated successfully in laboratory tests individually; however, the combined AuNP-chitosan suspension and Fe(0)-hydrogel DGT did not provide quantitative nitrate concentrations. Further research is required to improve the reaction rate of the AuNP-chitosan nitrite-binding layer, to meet the requirement of rapid binding to operate as a DGT.

5.
Phys Rev E ; 105(2-1): 024206, 2022 Feb.
Article En | MEDLINE | ID: mdl-35291153

The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one segment into the other. We show that transformation costs generally exhibit a nontrivial relationship with local sampling rate. If the sampling resolution undergoes strong variations, this effect impedes unbiased comparison between different time episodes. We study the impact of this effect on recurrence quantification analysis, a framework that is well suited for identifying regime shifts in nonlinear time series. A constrained randomization approach is put forward to correct for the biased recurrence quantification measures. This strategy involves the generation of a type of time series and time axis surrogates which we call sampling-rate-constrained (SRC) surrogates. We demonstrate the effectiveness of the proposed approach with a synthetic example and an irregularly sampled speleothem proxy record from Niue island in the central tropical Pacific. Application of the proposed correction scheme identifies a spurious transition that is solely imposed by an abrupt shift in sampling rate and uncovers periods of reduced seasonal rainfall predictability associated with enhanced El Niño-Southern Oscillation and tropical cyclone activity.

6.
Rapid Commun Mass Spectrom ; 36(10): e9278, 2022 May 30.
Article En | MEDLINE | ID: mdl-35191103

RATIONALE: The first-row transition metals Cu, Ni, and Co show a strong binding affinity to natural organic matter. Compared to dissolved elements and stable water isotopes, they may be transported rapidly through the soil and host rock into caves in response to infiltration events. This study aims to assess the potential of transition metal ratios as indicators for infiltration changes in response to the seasonal and/or event-based rainfall variation. METHODS: We developed a protocol to analyze Cu, Ni, and Co in the cave drip water using collision cell ICP-QMS without extensive sample pretreatment. The high Ca matrix leads to significant isobaric interferences on all isotope masses. Our method includes a correction of these matrix effects and yields results with comparable accuracy and reproducibility to other published methods. We applied this protocol to drip water samples from Larga Cave (Puerto Rico) covering at least two full annual cycles between 2014 and 2019 on a bimonthly scale. RESULTS: The analysis of external reference materials yielded a reproducibility between 4.7% and 9.2% (relative standard deviation), validating the accuracy of the matrix correction method. The limit of detection is <0.04 ppb for Cu, <0.02 ppb for Ni, and <0.008 ppb for Co. The analysis of drip water samples from Larga Cave reveals pronounced changes of several orders of magnitude in all Element (El) to Ca, Cu/Ni, and Cu/Co ratios in response to seasonal infiltration changes. In addition, we observe a partly even stronger response after major tropical storms and heavy precipitation events of the period of record, for example, tropical storm "Bertha" (2014) and the category 5 hurricanes "Irma" and "Maria" (both 2017). CONCLUSIONS: Transition metal ratios can be accurately measured in cave drip waters with high Ca matrix. At our tropical site, these are promising tracers of infiltration changes in response to changes in the amount of rainfall, providing the first step toward tropical cyclone reconstruction using trace elements in speleothems.


Metals, Heavy , Trace Elements , Environmental Monitoring/methods , Isotopes/analysis , Metals, Heavy/analysis , Reproducibility of Results , Seasons , Water/analysis
7.
J Environ Qual ; 51(2): 250-259, 2022 Mar.
Article En | MEDLINE | ID: mdl-34993967

Concentrations determined using diffusive gradients in thin films (DGT) have been used to derive time-averaged loads in streams and rivers. However, DGT provide time-weighted average concentrations that assume the independence of concentration and flow. Additionally, dynamic and coordinated changes in temperature, flow, and concentration are potential sources of bias in concentration and load calculations. We modeled scenarios in which temperature and flow were correlated to varying degrees with concentration and evaluated the consequences for DGT concentration and load calculations. As the correlation between solution flow and concentration moved toward 1 and -1, the load determined by DGT either overestimated or underestimated the actual load by as much as 30%. In DGT-based load estimates, the degree of potential bias should be assessed, and the concentration-flow relation should be characterized. As the correlation of analyte concentration and temperature approached 1 and -1, the deviation of the concentration determined by DGT from the actual concentration increased. In most cases, this bias was < 2%; however, if the changes in concentration and temperature were large (∼10 mg L-1 and ∼10 °C), the bias exceeded 5%. Concentration and temperature are unlikely to be perfectly or strongly correlated or anti-correlated in natural systems and thus should not affect the accuracy of DGT concentration calculations in most circumstances. The more solution temperature, flow, and concentration were uncorrelated, the closer DGT-derived concentration and load were to the actual solution concentration and load.


Nitrates , Water Pollutants, Chemical , Diffusion , Environmental Monitoring , Rivers , Temperature , Water Pollutants, Chemical/analysis
8.
Sci Rep ; 11(1): 22867, 2021 11 24.
Article En | MEDLINE | ID: mdl-34819580

Ecosystem feedbacks in response to ocean acidification can amplify or diminish diel pH oscillations in productive coastal waters. Benthic microalgae generate such oscillations in sediment porewater and here we ask how CO2 enrichment (acidification) of the overlying seawater alters these in the absence and presence of biogenic calcite. We placed a 1-mm layer of ground oyster shells, mimicking the arrival of dead calcifying biota (+Calcite), or sand (Control) onto intact silt sediment cores, and then gradually increased the pCO2 in the seawater above half of +Calcite and Control cores from 472 to 1216 µatm (pH 8.0 to 7.6, CO2:HCO3- from 4.8 to 9.6 × 10-4). Porewater [O2] and [H+] microprofiles measured 16 d later showed that this enrichment had decreased the O2 penetration depth (O2-pd) in +Calcite and Control, indicating a metabolic response. In CO2-enriched seawater: (1) sediment biogeochemical processes respectively added and removed more H+ to and from the sediment porewater in darkness and light, than in ambient seawater increasing the amplitude of the diel porewater [H+] oscillations, and (2) in darkness, calcite dissolution in +Calcite sediment decreased the porewater [H+] below that in overlying seawater, reversing the sediment-seawater H+ flux and decreasing the amplitude of diel [H+] oscillations. This dissolution did not, however, counter the negative effect of CO2 enrichment on O2-pd. We now hypothesise that feedback to CO2 enrichment-an increase in the microbial reoxidation of reduced solutes with O2-decreased the sediment O2-pd and contributed to the enhanced porewater acidification.

9.
Sci Total Environ ; 788: 147737, 2021 Sep 20.
Article En | MEDLINE | ID: mdl-34020089

Diffusive Gradients in Thin-Films (DGT) have traditionally been used to measure time-weighted average concentration in water. We tested whether Br--DGT in combination with the trace-dilution flow rate method, could be used as a new approach for measuring water flow rate. A novel bromide selective DGT based on the Purolite Bromide Plus anion exchange resin (Br--DGT) was developed, which provided environmental bromide concentrations comparable to grab samples. The Br--DGT provided quantitative bromide concentrations at a range of pH, competing ion concentrations, and in synthetic natural solution. The uptake efficiency was 95.7 ± 3.4%, and the elution efficiency was 95.5 ± 4.7%. The absorption maximum/saturation point of each binding disk was 0.684 ± 0.001 mg. Bromide adsorption to the binding layer was linear to 44.1% of the total binding capacity, 0.302 mg. The determined diffusion coefficient through the agarose cross-linked polyacrylamide (APA) hydrogels was 1.05 × 10-5 cm2 s-1 at 17.9 °C, temperature corrected to 25 °C was 1.29 × 10-5 cm2 s-1. DGT flow rates were between -14.7 and 6.50% of the flow independently monitored flow rate (weir). In comparison, grab sample flow rates diverged by 5.52 to 58.9% from the weir flow rate.

10.
Chemosphere ; 271: 129536, 2021 May.
Article En | MEDLINE | ID: mdl-33445027

Dissolved organic matter (DOM) release from Cd contaminated soils been linked to mobilisation of the metal as Cd-DOM complexes and this may be exacerbated by organic matter-rich soil amendments. The quantity and quality of the DOM can determine the proportion of dissolved Cd that partitions to mobile complexes and their stability and, thus, the potential for Cd transport from contaminated soils. The aim of this work was to examine differences in Cd mobilisation from soils to which different types of soil amendments/conditioners have been applied and the importance of DOM characteristics in determining the extent to which this can happen. Three soils were spiked with Cd to 2 mg kg-1, allowed to equilibrate and then treated with compost and peat. These soils and an untreated subsample of each soil were then adjusted to three different pHs: 5.6, 6.4 and 7.4, using lime. The amount of Cd mobilised from each soil was tested using a column leaching experiment. Ultrafiltration and speciation modelling were used to determine amounts of Cd as DOM-complexed, "truly" dissolved (<5 kDa) and colloidal species, while DOM quality was assessed using UV-Vis and fluorescence spectroscopy. Most colloidal Cd was mobilised from the compost treated soils (50%-60%), followed by the peat treated soils (20-44%). The relationships between colloidal Cd, DOC concentration and soil pH, together with the spectroscopic and modelling results showed that structural properties of DOM are an important factor in mobilising Cd from contaminated soils.


Soil Pollutants , Soil , Cadmium/analysis , Environmental Pollution , Metals , Soil Pollutants/analysis
11.
Sci Rep ; 11(1): 2178, 2021 01 26.
Article En | MEDLINE | ID: mdl-33500530

Tropical Pacific stalagmites are commonly affected by dating uncertainties because of their low U concentration and/or elevated initial 230Th content. This poses problems in establishing reliable trends and periodicities for droughts and pluvial episodes in a region vulnerable to climate change. Here we constrain the chronology of a Cook Islands stalagmite using synchrotron µXRF two-dimensional mapping of Sr concentrations coupled with growth laminae optical imaging constrained by in situ monitoring. Unidimensional LA-ICP-MS-generated Mg, Sr, Ba and Na variability series were anchored to the 2D Sr and optical maps. The annual hydrological significance of Mg, Sr, Ba and Na was tested by principal component analysis, which revealed that Mg and Na are related to dry-season, wind-transported marine aerosols, similar to the host-rock derived Sr and Ba signatures. Trace element annual banding was then used to generate a calendar-year master chronology with a dating uncertainty maximum of ± 15 years over 336 years. Our approach demonstrates that accurate chronologies and coupled hydroclimate proxies can be obtained from speleothems formed in tropical settings where low seasonality and problematic U-Th dating would discourage the use of high-resolution climate proxies datasets.

12.
Sci Rep ; 10(1): 2492, 2020 02 12.
Article En | MEDLINE | ID: mdl-32051432

Flowstone speleothem growth beneath Mount Arthur, New Zealand shows a clear relationship to vegetation density and soil development on the surface above. Flowstone does not currently form beneath sub-alpine Nothofagus forest above ca. 1000-1100 m altitude but U-Th dating shows it has formed there during past intervals of warmer-than-present conditions including an early-mid Holocene optimum and the last interglacial from ca. 131-119 ka. Some flowstones growing beneath ca. 600 m surface altitude, currently mantled with dense broadleaf-podocarp forest, grew during full glacial conditions, indicating that local tree line was never below this altitude. This implies that Last Glacial Maximum annual temperature was no more than ca. 4 °C cooler than today. Flowstone growth appears to be a robust indicator of dense surface vegetation and well-developed soil cover in this setting, and indicates that past interglacial climates of MIS 7e, 5e, the early-mid Holocene and possibly MIS 5a were more conducive to growth of trees than was the late Holocene, reflecting regional temperature changes similar in timing to Antarctic temperature changes. Here, flowstone speleothem growth is a sensitive indicator of vegetation density at high altitude, but may respond to other factors at lower altitudes.

13.
Sci Total Environ ; 718: 135267, 2020 May 20.
Article En | MEDLINE | ID: mdl-31859060

The increase in environmental nutrient availability as a result of human activities has necessitated the development of mitigation strategies for nutrient removal, such as nitrate. Current methods for determining the efficiency of different mitigation strategies required measurement of changes in nitrate concentrations, however, these methods can be expensive or do not account fully for the temporal variability of nitrate concentration. This study evaluated the utility of Diffusive Gradients in Thins-Films (DGT) for determining nitrate removal in two denitrifying bioreactors, and compared DGT performance to traditional approaches for determining performance, including high and low frequency water grab sampling. The binding layer was produced using the Purolite® A520E anion exchange resin. The uptake and elution efficiencies were 98.8% and 93.4% respectively. DGTs of three material diffusion layer thicknesses were placed in piezometers along longitudinal transects, to enable calculation of the diffusive boundary layer and provide replicates. These were removed after 16, 24 and 36 h, and the accumulated nitrate masses were extracted and quantified to calculate nitrate concentration. Concentrations were subsequently utilised to calculate nitrate removal rates in both bioreactors. Grab samples were taken at 30 and 60 min intervals over those periods, nitrate concentrations were also measured to determine nitrate removal. DGTs provided nitrate removal rates at bioreactor site one (controlled flow, wastewater treatment) of 14.83-30.75 g N m-3 d-1, and 1.22-3.63 g N m-3 d-1 at site two (variable flow, agricultural run-off). DGT determined nitrate concentrations and removal rates were in strong accordance with high frequency grab sampling, but data collection via DGTs was considerably easier. Utilising DGTs for the measurement of bioreactor performance overcame many of the challenges associated with high frequency grab sampling, and other methods, such as accounting for temporal variation in nitrate concentration and reduced analytical requirements.


Bioreactors , Diffusion , Environmental Monitoring , Nitrates , Wastewater
14.
Sci Rep ; 9(1): 12012, 2019 08 19.
Article En | MEDLINE | ID: mdl-31427639

Coastal ocean acidification research is dominated by laboratory-based studies that cannot necessarily predict real-world ecosystem response given its complexity. We enriched coastal sediments with increasing quantities of organic matter in the field to identify the effects of eutrophication-induced acidification on benthic structure and function, and assess whether biogenic calcium carbonate (CaCO3) would alter the response. Along the eutrophication gradient we observed declines in macrofauna biodiversity and impaired benthic net primary productivity and sediment nutrient cycling. CaCO3 addition did not alter the macrofauna community response, but significantly dampened negative effects on function (e.g. net autotrophy occurred at higher levels of organic matter enrichment in +CaCO3 treatments than -CaCO3 (1400 vs 950 g dw m-2)). By identifying the links between eutrophication, sediment biogeochemistry and benthic ecosystem structure and function in situ, our study represents a crucial step forward in understanding the ecological effects of coastal acidification and the role of biogenic CaCO3 in moderating responses.

15.
Sci Rep ; 9(1): 9573, 2019 07 02.
Article En | MEDLINE | ID: mdl-31267013

Pollution from the grounding or sinking of ships can have long lasting effects on the recovery and dynamics of coastal ecosystems. Research on the impact of copper (Cu) pollution from the 2011 MV Rena shipwreck at the Astrolabe Reef (Otaiti), New Zealand, 5 years after the grounding, followed a multi-method and multi-disciplinary approach. Three independent measures of aqueous Cu using trace-element-clean-techniques substantiate the presence of high total, total dissolved (<2 µm) and elevated bioavailable Cu in the water column immediately above the aft section of the wreck where the highest sedimentary load of Cu was located. Intermittently elevated concentrations of strong Cu-binding ligands occurred in this location, and their binding strength was consistent with ligands actively produced by organisms in response to Cu induced stress. The recruitment of benthic invertebrates was modified at the high-Cu location. Taxonomic groups usually considered robust to pollution were restricted to this site (e.g. barnacles) or were the most abundant taxa present (e.g. foraminifera). Our results demonstrate that Cu-contaminated sediments can impose a persistent point source of Cu pollution in high-energy reef environments, with the potential to modify the composition and recovery of biological communities.

16.
Chemosphere ; 199: 684-693, 2018 May.
Article En | MEDLINE | ID: mdl-29475159

The accumulation of Cd in soils worldwide has increased the demand for methods to reduce the metal's plant bioavailability. Organic matter rich soil amendments have been shown to be effective in achieving this. However, it is not known how long these amendments can retain the Cd, and whether dissolved organic matter (DOM) released from them can enhance the metal's mobility in the environment. In this study we sought to test the Cd binding capacity of various organic soil amendments, and evaluate differences in characteristics of the DOM released to see if they can explain the lability of the Cd-DOM complexes. We collected ten organic soil amendments from around New Zealand: five different composts, biosolids from two sources, two types of peat and spent coffee grounds. We characterised the amendments' elemental composition and their ability to bind the Cd. We then selected two composts and two peats for further tests, where we measured the sorption of Ni or Zn by the amendments. We analysed the quality of the extracted DOM from the four amendments using 3D Excitation Emission Matrix analysis, and tested the lability of the metal-DOM complexes using an adapted diffusive gradients in thin-films (DGT) method. We found that composts bound the most Cd and that the emergent Cd-DOM complexes were less labile than those from the peats. Ni-DOM complexes were the least labile. The aromaticity of the extracted DOM appears to be an important factor in determining the lability of Ni complexes, but less so for Zn and Cd.


Cadmium/pharmacokinetics , Nickel/pharmacokinetics , Soil/chemistry , Trace Elements/analysis , Zinc/pharmacokinetics , Biological Availability , Cadmium/analysis , Metals/analysis , Metals/pharmacokinetics , New Zealand , Nickel/analysis , Nickel/chemistry , Plants/metabolism , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Trace Elements/pharmacokinetics , Zinc/analysis
17.
Environ Sci Technol ; 51(13): 7369-7377, 2017 Jul 05.
Article En | MEDLINE | ID: mdl-28585807

Globally widespread phosphate fertilizer applications have resulted in long-term increases in the concentration of cadmium (Cd) in soils. The accumulation of this biotoxic, and bioaccumulative metal presents problems for the management of soil-plant-animal systems, because the magnitude and direction of removal fluxes (e.g., crop uptake, leaching) have been difficult to estimate. Here, Cd isotopic compositions (δ114/110Cd) of archived fertilizer and soil samples from a 66 year-long agricultural field trial in Winchmore, New Zealand, were used to constrain the Cd soil mass balance between 1959 and 2015 AD, informing future soil Cd accumulation trajectories. The isotopic partitioning of soil Cd sources in this system was aided by a change in phosphate source rocks in 1998 AD, and a corresponding shift in fertilizer isotope composition. The dominant influence of mixing between isotopically distinct Cd end-members was confirmed by a Bayesian modeling approach. Furthermore, isotope mass balance modeling revealed that Cd removal processes most likely increased in magnitude substantially between 2000 and 2015 AD, implying an increase in Cd bioaccumulation and/or leaching over that interval. Natural-abundance stable isotopes are introduced here as a powerful tool for tracing the fate of Cd in agricultural soils, and potentially the wider environment.


Cadmium , Soil Pollutants , Animals , Bayes Theorem , Isotopes , New Zealand , Soil
18.
Environ Sci Technol ; 49(24): 14101-9, 2015 Dec 15.
Article En | MEDLINE | ID: mdl-26544638

The microbial oxidation of organic matter coupled to reductive iron oxide dissolution is widely recognized as the dominant mechanism driving elevated arsenic (As) concentrations in aquifers. This paper considers the potential of nanoparticles to increase the mobility of As in aquifers, thereby accounting for discrepancies between predicted and observed As transport reported elsewhere. Arsenic, phosphorus, and iron size distributions and natural organic matter association were examined along a flow path from surface water via the hyporheic zone to shallow groundwater. Our analysis demonstrates that the colloidal Fe concentration (>1 kDa) correlates with both colloidal P and colloidal As concentrations. Importantly, increases in the concentration of colloidal P (>1 kDa) were positively correlated with increases in the concentration of nominally dissolved As (<1 kDa), but no correlation was observed between colloidal As and nominally dissolved P. This suggests that P actively competes for adsorption sites on Fe nanoparticles, displacing adsorbed As, thus mirroring their interaction with Fe oxides in the aquifer matrix. Dynamic redox fronts at the interface between streams and aquifers may therefore provide globally widespread conditions for the generation of Fe nanoparticles, a mobile phase for As adsorption currently not a part of reactive transport models.


Arsenic/analysis , Groundwater/chemistry , Iron/analysis , Metal Nanoparticles/chemistry , Phosphorus/analysis , Rivers/chemistry , Adsorption , Chemical Fractionation , Colloids , Geologic Sediments/chemistry , Groundwater/analysis , Microscopy, Atomic Force , Models, Theoretical , Nanoparticles , New South Wales , Oxidation-Reduction , Particle Size , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 43(5): 1310-5, 2009 Mar 01.
Article En | MEDLINE | ID: mdl-19350896

There is a shortage of archives of sulfur that can be used to investigate industrial orvolcanic pollution in terrestrial catchments, but the role of S as a nutrient, coupled with sparse published evidence, suggests that trees are promising targets. We focused on two conifer species (Picea abies (L.) Karst and Abies alba Miller) from an Alpine site in NE Italy. Bulk analyses of Abies demonstrate that S concentrations were higher in the second half of the 20th century but with some high outliers possibly reflecting particulate impurities. X-ray synchrotron analyses confirmed the observed time trend, which is similar to that of a nearby stalagmite, and reflects an atmospheric pollution record mediated by storage in the soil and ecosystem. S and P were found to be localized in the inner cell wall (ca. 2 microm wide), local thickenings of which probably account for some outlying high values of S in synchrotron studies. S occurs as a mixture of oxidation states (0 to +0.5, +2, +5, and +6) which are consistent in space and time. The results indicate that wood older than a few years contains archive-quality S but that robust conclusions require multiple replicate analyses.


Environment , Sulfur/metabolism , Synchrotrons , Wood/metabolism , Abies/metabolism , Cell Wall/chemistry , Environmental Pollution , Models, Statistical , Picea/metabolism , Powders , Reproducibility of Results , Resins, Plant/chemistry , Spectrophotometry, Atomic , Time Factors , Trees/metabolism , X-Rays
...