Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35744603

RESUMEN

Tick cell lines are important tools for research on ticks and the pathogens they transmit. Here, we report the establishment of ten new cell lines from European ticks of the genera Argas, Dermacentor, Hyalomma, Ixodes and Rhipicephalus originating from Germany and Spain. For each cell line, the method used to generate the primary culture, a morphological description of the cells and species confirmation by sequencing of the partial 16S rRNA gene are presented. Further molecular analysis of the two new Ixodes ricinus cell lines and three existing cell lines of the same species revealed genetic variation between cell lines derived from ticks collected in the same or nearby locations. Collectively, these new cell lines will support research into a wide range of viral, bacterial and protozoal tick-borne diseases prevalent in Europe.

2.
Vaccines (Basel) ; 10(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35746469

RESUMEN

Onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, is a neglected tropical disease mainly of sub-Saharan Africa. Worldwide, an estimated 20.9 million individuals live with infection and a further 205 million are at risk of disease. Current control methods rely on mass drug administration of ivermectin to kill microfilariae and inhibit female worm fecundity. The identification and development of efficacious vaccines as complementary preventive tools to support ongoing elimination efforts are therefore an important objective of onchocerciasis research. We evaluated the protective effects of co-administering leading O. volvulus-derived recombinant vaccine candidates (Ov-103 and Ov-RAL-2) with subsequent natural exposure to the closely related cattle parasite Onchocerca ochengi. Over a 24-month exposure period, vaccinated calves (n = 11) were shown to acquire infection and microfilaridermia at a significantly lower rate compared to unvaccinated control animals (n = 10). Furthermore, adult female worm burdens were negatively correlated with anti-Ov-103 and Ov-RAL-2 IgG1 and IgG2 responses. Peptide arrays identified several Ov-103 and Ov-RAL-2-specific epitopes homologous to those identified as human B-cell and helper T-cell epitope candidates and by naturally-infected human subjects in previous studies. Overall, this study demonstrates co-administration of Ov-103 and Ov-RAL-2 with Montanide™ ISA 206 VG is highly immunogenic in cattle, conferring partial protection against natural challenge with O. ochengi. The strong, antigen-specific IgG1 and IgG2 responses associated with vaccine-induced protection are highly suggestive of a mixed Th1/Th2 associated antibody responses. Collectively, this evidence suggests vaccine formulations for human onchocerciasis should aim to elicit similarly balanced Th1/Th2 immune responses.

3.
Insects ; 12(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34680640

RESUMEN

Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host-endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.

4.
Am J Respir Crit Care Med ; 203(2): 192-201, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33217246

RESUMEN

Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.


Asunto(s)
COVID-19/inmunología , Inflamación/virología , Pulmón/inmunología , Insuficiencia Multiorgánica/virología , SARS-CoV-2/inmunología , Anciano , Anciano de 80 o más Años , Autopsia , Biopsia , COVID-19/patología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/inmunología , Inflamación/patología , Pulmón/patología , Pulmón/virología , Masculino , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/patología , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad
5.
Artículo en Inglés | MEDLINE | ID: mdl-31555604

RESUMEN

When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Toxoplasma/fisiología , Toxoplasma/patogenicidad , Animales , Técnicas de Cultivo de Célula , Colesterol , Colágeno , Modelos Animales de Enfermedad , Células Epiteliales/parasitología , Células Epiteliales/patología , Humanos , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL
6.
Cell Tissue Res ; 375(2): 409-424, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30259138

RESUMEN

The in vitro 3D culture of intestinal epithelium is a valuable resource in the study of its function. Organoid culture exploits stem cells' ability to regenerate and produce differentiated epithelium. Intestinal organoid models from rodent or human tissue are widely available whereas large animal models are not. Livestock enteric and zoonotic diseases elicit significant morbidity and mortality in animal and human populations. Therefore, livestock species-specific models may offer novel insights into host-pathogen interactions and disease responses. Bovine and porcine jejunum were obtained from an abattoir and their intestinal crypts isolated, suspended in Matrigel, cultured, cryopreserved and resuscitated. 'Rounding' of crypts occurred followed by budding and then enlargement of the organoids. Epithelial cells were characterised using immunofluorescent staining and confocal microscopy. Organoids were successfully infected with Toxoplasma gondii or Salmonella typhimurium. This 3D organoid model offers a long-term, renewable resource for investigating species-specific intestinal infections with a variety of pathogens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mucosa Intestinal/metabolismo , Animales , Bovinos , Diferenciación Celular , Criopreservación , Ganado , Ratones Endogámicos C57BL , Organoides/metabolismo , Fenotipo , Salmonella typhimurium/fisiología , Porcinos , Supervivencia Tisular , Toxoplasma/fisiología
7.
Front Immunol ; 9: 3011, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619358

RESUMEN

The neonatal period represents a window of susceptibility for ruminants given the abundance of infectious challenges in their environment. Maternal transfer of immunity does not occur in utero but post-parturition, however this does not compensate for potential deficits in the cellular compartment. Here we present a cellular and transcriptomic study to investigate if there is an age-related difference in the monocyte response in cattle during intra-cellular protozoan infection. We utilized Neospora caninum, an obligate intracellular protozoan parasite that causes abortion and negative economic impacts in cattle worldwide, to study these responses. We found neonatal animals had a significant greater percentage of CD14+ monocytes with higher CD80 cell surface expression. Adult monocytes harbored more parasites compared to neonatal monocytes; additionally greater secretion of IL-1ß was observed in neonates. Microarray analysis revealed neonates have 535 genes significantly upregulated compared to adult with 23 upregulated genes. Biological pathways involved in immune response were evaluated and both age groups showed changes in the upregulation of tyrosine phosphorylation of STAT protein and JAK-STAT cascade pathways. However, the extent to which these pathways were upregulated in neonates was much greater. Our findings suggest that neonates are more resistant to cellular invasion with protozoan parasites and that the magnitude of the responses is related to significant changes in the JAK-STAT network.


Asunto(s)
Enfermedades de los Bovinos/inmunología , Coccidiosis/inmunología , Monocitos/inmunología , Neospora/inmunología , Aborto Séptico/inmunología , Aborto Séptico/parasitología , Aborto Veterinario/inmunología , Aborto Veterinario/parasitología , Factores de Edad , Crianza de Animales Domésticos , Animales , Bovinos , Enfermedades de los Bovinos/parasitología , Coccidiosis/parasitología , Femenino , Quinasas Janus/metabolismo , Masculino , Monocitos/metabolismo , Monocitos/parasitología , Neospora/patogenicidad , Embarazo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/inmunología
8.
ISME J ; 8(4): 925-37, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24152719

RESUMEN

The bacterium Wolbachia (order Rickettsiales), representing perhaps the most abundant vertically transmitted microbe worldwide, infects arthropods and filarial nematodes. In arthropods, Wolbachia can induce reproductive alterations and interfere with the transmission of several arthropod-borne pathogens. In addition, Wolbachia is an obligate mutualist of the filarial parasites that cause lymphatic filariasis and onchocerciasis in the tropics. Targeting Wolbachia with tetracycline antibiotics leads to sterilisation and ultimately death of adult filariae. However, several weeks of treatment are required, restricting the implementation of this control strategy. To date, the response of Wolbachia to stress has not been investigated, and almost nothing is known about global regulation of gene expression in this organism. We exposed an arthropod Wolbachia strain to doxycycline in vitro, and analysed differential expression by directional RNA-seq and label-free, quantitative proteomics. We found that Wolbachia responded not only by modulating expression of the translation machinery, but also by upregulating nucleotide synthesis and energy metabolism, while downregulating outer membrane proteins. Moreover, Wolbachia increased the expression of a key component of the twin-arginine translocase (tatA) and a phosphate ABC transporter ATPase (PstB); the latter is associated with decreased susceptibility to antimicrobials in free-living bacteria. Finally, the downregulation of 6S RNA during translational inhibition suggests that this small RNA is involved in growth rate control. Despite its highly reduced genome, Wolbachia shows a surprising ability to regulate gene expression during exposure to a potent stressor. Our findings have general relevance for the chemotherapy of obligate intracellular bacteria and the mechanistic basis of persistence in the Rickettsiales.


Asunto(s)
Antibacterianos/farmacología , Doxiciclina/farmacología , Proteómica , Estrés Fisiológico/genética , Wolbachia/efectos de los fármacos , Wolbachia/genética , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Animales , Artrópodos/microbiología , Proteínas Bacterianas/genética , Línea Celular , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , ARN Bacteriano/genética , ARN no Traducido , Wolbachia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA