Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Biotechnol ; 23(1): 89-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22138493

RESUMEN

The vital nature of metal uptake and balance in biology is evident in the highly evolved strategies to facilitate metal homeostasis in all three domains of life. Several decades of study on metals and metalloproteins have revealed numerous essential bio-metal functions. Recent advances in mass spectrometry, X-ray scattering/absorption, and proteomics have exposed a much broader usage of metals in biology than expected. Even elements such as uranium, arsenic, and lead are implicated in biological processes as part of an emerging and expansive view of bio-metals. Here we discuss opportunities and challenges for established and newer approaches to study metalloproteins with a focus on technologies that promise to rapidly expand our knowledge of metalloproteins and metal functions in biology.


Asunto(s)
Metaloproteínas/análisis , Metales/metabolismo , Proteoma/análisis , Archaea/química , Bacterias/química , Ecosistema , Humanos , Espectrometría de Masas/métodos , Metaloproteínas/química , Metales/química , Modelos Moleculares
2.
J Biol Chem ; 286(51): 44254-44265, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22027840

RESUMEN

Pilin proteins assemble into Type IV pili (T4P), surface-displayed bacterial filaments with virulence functions including motility, attachment, transformation, immune escape, and colony formation. However, challenges in crystallizing full-length fiber-forming and membrane protein pilins leave unanswered questions regarding pilin structures, assembly, functions, and vaccine potential. Here we report pilin structures of full-length DnFimA from the sheep pathogen Dichelobacter nodosus and FtPilE from the human pathogen Francisella tularensis at 2.3 and 1 Å resolution, respectively. The DnFimA structure reveals an extended kinked N-terminal α-helix, an unusual centrally located disulfide, conserved subdomains, and assembled epitopes informing serogroup vaccines. An interaction between the conserved Glu-5 carboxyl oxygen and the N-terminal amine of an adjacent subunit in the crystallographic dimer is consistent with the hypothesis of a salt bridge between these groups driving T4P assembly. The FtPilE structure identifies an authentic Type IV pilin and provides a framework for understanding the role of T4P in F. tularensis virulence. Combined results define a unified pilin architecture, specialized subdomain roles in pilus assembly and function, and potential therapeutic targets.


Asunto(s)
Proteínas Bacterianas/química , Vacunas Bacterianas/química , Dichelobacter nodosus/química , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Polímeros/química , Conformación Proteica , Homología de Secuencia de Aminoácido
3.
Cell ; 145(1): 54-66, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458667

RESUMEN

The MR (Mre11 nuclease and Rad50 ABC ATPase) complex is an evolutionarily conserved sensor for DNA double-strand breaks, highly genotoxic lesions linked to cancer development. MR can recognize and process DNA ends even if they are blocked and misfolded. To reveal its mechanism, we determined the crystal structure of the catalytic head of Thermotoga maritima MR and analyzed ATP-dependent conformational changes. MR adopts an open form with a central Mre11 nuclease dimer and two peripheral Rad50 molecules, a form suited for sensing obstructed breaks. The Mre11 C-terminal helix-loop-helix domain binds Rad50 and attaches flexibly to the nuclease domain, enabling large conformational changes. ATP binding to the two Rad50 subunits induces a rotation of the Mre11 helix-loop-helix and Rad50 coiled-coil domains, creating a clamp conformation with increased DNA-binding activity. The results suggest that MR is an ATP-controlled transient molecular clamp at DNA double-strand breaks.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Enzimas Reparadoras del ADN/química , Reparación del ADN , Proteínas de Unión al ADN/química , Thermotoga maritima/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Thermotoga maritima/metabolismo , Difracción de Rayos X
4.
Biochem J ; 437(1): 43-52, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21506936

RESUMEN

Microbial motility frequently depends on flagella or type IV pili. Using recently developed archaeal genetic tools, archaeal flagella and its assembly machinery have been identified. Archaeal flagella are functionally similar to bacterial flagella and their assembly systems are homologous with type IV pili assembly systems of Gram-negative bacteria. Therefore elucidating their biochemistry may result in insights in both archaea and bacteria. FlaI, a critical cytoplasmic component of the archaeal flagella assembly system in Sulfolobus acidocaldarius, is a member of the type II/IV secretion system ATPase superfamily, and is proposed to be bi-functional in driving flagella assembly and movement. In the present study we show that purified FlaI is a Mn2+-dependent ATPase that binds MANT-ATP [2'-/3'-O-(N'- methylanthraniloyl)adenosine-5'-O-triphosphate] with a high affinity and hydrolyses ATP in a co-operative manner. FlaI has an optimum pH and temperature of 6.5 and 75 °C for ATP hydrolysis. Remarkably, archaeal, but not bacterial, lipids stimulated the ATPase activity of FlaI 3-4-fold. Analytical gel filtration indicated that FlaI undergoes nucleotide-dependent oligomerization. Furthermore, SAXS (small-angle X-ray scattering) analysis revealed an ATP-dependent hexamerization of FlaI in solution. The results of the present study report the first detailed biochemical analyses of the motor protein of an archaeal flagellum.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Archaea/enzimología , Proteínas Arqueales/metabolismo , Flagelos/enzimología , Adenosina Trifosfato/análogos & derivados , Sitios de Unión , Flagelos/metabolismo , Concentración de Iones de Hidrógeno , Metabolismo de los Lípidos , Pliegue de Proteína , Temperatura , ortoaminobenzoatos/metabolismo
5.
RNA Biol ; 8(1): 55-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21282980

RESUMEN

RNA exosomes are large multi-subunit protein complexes involved in controlled and processive 3' to 5' RNA degradation. Exosomes form large molecular chambers and harbor multiple nuclease sites as well as RNA binding regions. This makes a quantitative kinetic analysis of RNA degradation with reliable parameter and error estimates challenging. For instance, recent quantitative biochemical assays revealed that degradation speed and efficiency depend on various factors, such as the type of RNA binding caps and the RNA length. We propose the combination of a differential equation model with bayesian Markov Chain Monte Carlo (MCMC) sampling for a more robust and reliable analysis of such complex kinetic systems. Using the exosome as a paradigm, it is shown that conventional "best fit" approaches to parameter estimation are outperformed by the MCMC method. The parameter distribution returned by MCMC sampling allows for a reliable and meaningful comparison of the data from different time series. In the case of the exosome, we find that the cap structures of the exosome have a direct effect on the recruitment and degradation of RNA, and that these effects are RNA length-dependent. The described approach can be widely applied to any processive reaction with a similar kinetics like the XRN1-dependent RNA degradation, RNA/DNA synthesis by polymerases, and protein synthesis by the ribosome.


Asunto(s)
Teorema de Bayes , Exosomas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Dominio Catalítico , Exosomas/química , Cinética , Cadenas de Markov , Modelos Teóricos , Método de Montecarlo , Polimerizacion , Proteínas de Unión al ARN/química
6.
Nano Lett ; 10(12): 5123-30, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21082788

RESUMEN

Molecular motors have inspired many avenues of research for nanotechnology but most molecular motors studied so far allow only unidirectional movement. The archaeal RNA-exosome is a reversible motor that can either polymerize or degrade an RNA strand, depending on the chemical environments. We developed a single molecule fluorescence assay to analyze the real time locomotion of this nanomachine on RNA. Despite the multimeric structure, the enzyme followed the Michaelis-Menten kinetics with the maximum speed of ∼3 nucleotides/s, showing that the three catalytic cylinders do not fire cooperatively. We also demonstrate rapid directional switching on demand by fluidic control. When the two reaction speeds are balanced on average, the enzyme shows a memory of the previous reaction it catalyzed and stochastically switches between primarily polymerizing and primarily degrading behaviors. The processive, reversible, and controllable locomotion propelled by this nanomachine has a promising potential in environmental sensing, diagnostic, and cargo delivery applications.


Asunto(s)
Movimiento , Nanoestructuras , Procesamiento Postranscripcional del ARN , Transferencia Resonante de Energía de Fluorescencia , Cinética , Polímeros/química
7.
RNA ; 16(11): 2058-67, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20823118

RESUMEN

Caenorhabditis elegans GLD-3 is a five K homology (KH) domain-containing protein involved in the translational control of germline-specific mRNAs during embryogenesis. GLD-3 interacts with the cytoplasmic poly(A)-polymerase GLD-2. The two proteins cooperate to recognize target mRNAs and convert them into a polyadenylated, translationally active state. We report the 2.8-Å-resolution crystal structure of a proteolytically stable fragment encompassing the KH2, KH3, KH4, and KH5 domains of C. elegans GLD-3. The structure reveals that the four tandem KH domains are organized into a globular structural unit. The domains are involved in extensive side-by-side interactions, similar to those observed in previous structures of dimeric KH domains, as well as head-to-toe interactions. Small-angle X-ray scattering reconstructions show that the N-terminal KH domain (KH1) forms a thumb-like protrusion on the KH2-KH5 unit. Although KH domains are putative RNA-binding modules, the KH region of GLD-3 is unable in isolation to cross-link RNA. Instead, the KH1 domain mediates the direct interaction with the poly(A)-polymerase GLD-2, pointing to a function of the KH region as a protein-protein interaction platform.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Pliegue de Proteína , Proteínas de Unión al ARN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia
8.
Nucleic Acids Res ; 38(15): 5166-76, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20392821

RESUMEN

RNA exosomes are large multisubunit assemblies involved in controlled RNA processing. The archaeal exosome possesses a heterohexameric processing chamber with three RNase-PH-like active sites, capped by Rrp4- or Csl4-type subunits containing RNA-binding domains. RNA degradation by RNA exosomes has not been studied in a quantitative manner because of the complex kinetics involved, and exosome features contributing to efficient RNA degradation remain unclear. Here we derive a quantitative kinetic model for degradation of a model substrate by the archaeal exosome. Markov Chain Monte Carlo methods for parameter estimation allow for the comparison of reaction kinetics between different exosome variants and substrates. We show that long substrates are degraded in a processive and short RNA in a more distributive manner and that the cap proteins influence degradation speed. Our results, supported by small angle X-ray scattering, suggest that the Rrp4-type cap efficiently recruits RNA but prevents fast RNA degradation of longer RNAs by molecular friction, likely by RNA contacts to its unique KH-domain. We also show that formation of the RNase-PH like ring with entrapped RNA is not required for high catalytic efficiency, suggesting that the exosome chamber evolved for controlled processivity, rather than for catalytic chemistry in RNA decay.


Asunto(s)
Proteínas Arqueales/química , Exorribonucleasas/química , ARN/metabolismo , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/enzimología , Exorribonucleasas/metabolismo , Cinética , ARN/química , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Biochem Soc Trans ; 37(Pt 1): 83-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143607

RESUMEN

The RNA exosome is a multisubunit exonuclease involved in numerous RNA maturation and degradation processes. Exosomes are found in eukaryotes and archaea and are related to bacterial polynucleotide phosphorylates. Over the past years structural and biochemical analysis revealed that archaeal exosomes have a large processing chamber with three phosphorolytic active sites that degrade RNA in the 3'-->5' direction in a highly processive manner. A narrow entry pore, framed by putative RNA-binding domains, could account for the high processivity and also prevent degradation of structured RNA. The phosphorolytic nuclease activity is reversible, leading to formation of heteropolymeric tails from nucleoside diphosphates as substrate. This reversibility is difficult to regulate, suggesting why, during evolution and emergence of stable poly(A) tails in eukaryotes, polyadenylation and nuclease activities in the human exosome and associated factors have been separated.


Asunto(s)
Archaea/metabolismo , Exosomas/química , Exosomas/metabolismo , Archaea/enzimología , Coenzimas/metabolismo , Humanos , Modelos Biológicos , Estabilidad del ARN , ARN de Archaea/metabolismo
10.
Mol Cell ; 30(2): 167-78, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18439896

RESUMEN

To reveal mechanisms of DNA damage checkpoint initiation, we structurally and biochemically analyzed DisA, a protein that controls a Bacillus subtilis sporulation checkpoint in response to DNA double-strand breaks. We find that DisA forms a large octamer that consists of an array of an uncharacterized type of nucleotide-binding domain along with two DNA-binding regions related to the Holliday junction recognition protein RuvA. Remarkably, the nucleotide-binding domains possess diadenylate cyclase activity. The resulting cyclic diadenosine phosphate, c-di-AMP, is reminiscent but distinct from c-di-GMP, an emerging prokaryotic regulator of complex cellular processes. Diadenylate cyclase activity is unaffected by linear DNA or DNA ends but strongly suppressed by branched nucleic acids such as Holliday junctions. Our data indicate that DisA signals DNA structures that interfere with chromosome segregation via c-di-AMP. Identification of the diadenylate cyclase domain in other eubacterial and archaeal proteins implies a more general role for c-di-AMP in prokaryotes.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Roturas del ADN de Doble Cadena , Liasas de Fósforo-Oxígeno/química , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , ADN Cruciforme/química , ADN Cruciforme/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Datos de Secuencia Molecular , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Estructura Terciaria de Proteína , Recombinación Genética , Soluciones , Esporas Bacterianas/enzimología , Esporas Bacterianas/genética , Thermotoga maritima/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...