Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Control Release ; 367: 27-44, 2024 Mar.
Article En | MEDLINE | ID: mdl-38215984

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Huntington Disease , Oligonucleotides, Antisense , Mice , Animals , Oligonucleotides, Antisense/therapeutic use , Apolipoprotein A-I/genetics , Huntington Disease/drug therapy , Huntington Disease/genetics , Oligonucleotides/therapeutic use , Brain/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/therapeutic use , Disease Models, Animal
2.
Hum Gene Ther ; 34(17-18): 927-946, 2023 09.
Article En | MEDLINE | ID: mdl-37597209

Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.


Hyperlipoproteinemia Type I , Humans , Animals , Mice , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/therapy , Tissue Distribution , Transgenes , Administration, Intravenous
3.
Cell Rep ; 40(2): 111070, 2022 07 12.
Article En | MEDLINE | ID: mdl-35830814

During embryogenesis, neural stem/progenitor cells (NPCs) proliferate and differentiate to form brain tissues. Here, we show that in the developing murine cerebral cortex, the balance between the NPC maintenance and differentiation is coordinated by ubiquitin signals that control the formation of processing bodies (P-bodies), cytoplasmic membraneless organelles critical for cell state regulation. We find that the deubiquitinase Otud4 and the E3 ligase Trim56 counter-regulate the ubiquitination status of a core P-body protein 4E-T to orchestrate the assembly of P-bodies in NPCs. Aberrant induction of 4E-T ubiquitination promotes P-body assembly in NPCs and causes a delay in their cell cycle progression and differentiation. In contrast, loss of 4E-T ubiquitination abrogates P-bodies and results in premature neurogenesis. Thus, our results reveal a critical role of ubiquitin-dependent regulation of P-body formation in NPC maintenance and neurogenesis during brain development.


Neural Stem Cells , Processing Bodies , Ubiquitination , Animals , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Nucleocytoplasmic Transport Proteins/metabolism , Processing Bodies/metabolism , Ubiquitins/metabolism
4.
Nat Commun ; 11(1): 2018, 2020 04 24.
Article En | MEDLINE | ID: mdl-32332750

Gene regulation and metabolism are two fundamental processes that coordinate the self-renewal and differentiation of neural precursor cells (NPCs) in the developing mammalian brain. However, little is known about how metabolic signals instruct gene expression to control NPC homeostasis. Here, we show that methylglyoxal, a glycolytic intermediate metabolite, modulates Notch signalling to regulate NPC fate decision. We find that increased methylglyoxal suppresses the translation of Notch1 receptor mRNA in mouse and human NPCs, which is mediated by binding of the glycolytic enzyme GAPDH to an AU-rich region within Notch1 3'UTR. Interestingly, methylglyoxal inhibits the enzymatic activity of GAPDH and engages it as an RNA-binding protein to suppress Notch1 translation. Reducing GAPDH levels or restoring Notch signalling rescues methylglyoxal-induced NPC depletion and premature differentiation in the developing mouse cortex. Taken together, our data indicates that methylglyoxal couples the metabolic and translational control of Notch signalling to control NPC homeostasis.


Brain/growth & development , Gene Expression Regulation, Developmental , Neural Stem Cells/metabolism , Pyruvaldehyde/metabolism , Receptor, Notch1/metabolism , 3' Untranslated Regions , Animals , Brain/cytology , Brain/metabolism , Cell Differentiation , Cell Line , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , HEK293 Cells , Humans , Mice , Neurogenesis/genetics , Protein Biosynthesis , RNA, Messenger/metabolism , Receptor, Notch1/genetics , Signal Transduction/genetics
...