Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
PLoS One ; 19(4): e0302388, 2024.
Article En | MEDLINE | ID: mdl-38648207

The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.


Liver , Salmo salar , Animals , Liver/metabolism , Salmo salar/genetics , Salmo salar/growth & development , Salmo salar/metabolism , Photoperiod , DNA Methylation , Genome , Transcriptome , Transcription Factors/metabolism , Transcription Factors/genetics , Seawater , Lipid Metabolism/genetics , Fish Proteins/genetics , Fish Proteins/metabolism
2.
G3 (Bethesda) ; 13(4)2023 04 11.
Article En | MEDLINE | ID: mdl-36786483

The expansion of genomic resources for Atlantic salmon over the past half decade has enabled efficient interrogation of genetic traits by large-scale correlation of genotype to phenotype. Moving from correlation to causation will require genotype-phenotype relationships to be tested experimentally in a cost-efficient and cell context-relevant manner. To enable such future experiments, we have developed a method for the isolation and genetic manipulation of primary hepatocytes from Atlantic salmon for use in heterologous expression, reporter assay, and gene editing experiments. We chose the liver as the tissue of interest because it is the metabolic hub and many current Atlantic salmon research projects focus on understanding metabolic processes to improve traits such as the growth rate, total fat content, and omega-3 content. We find that isolated primary hepatocytes are optimally transfected with both plasmid and ribonucleoprotein using a Neon electroporator at 1,400 V, 10 ms, and 2 pulses. Transfection efficiency with plasmid and cutting efficiency with ribonucleoprotein were optimally 46% and 60%, respectively. We also demonstrate a 26 times increase in luciferase expression under the promoter of the key liver metabolic gene, elovl5b, compared to an empty vector, in line with expected liver-specific expression. Taken together, this work provides a valuable resource enabling transfection and gene editing experiments in a context-relevant and cost-effective system.


Salmo salar , Animals , Salmo salar/genetics , Gene Editing , Transfection , Hepatocytes , Promoter Regions, Genetic
3.
PeerJ ; 7: e7732, 2019.
Article En | MEDLINE | ID: mdl-31576253

Hepatic lipid metabolism is traditionally investigated in vitro using hepatocyte monocultures lacking the complex three-dimensional structure and interacting cell types essential liver function. Precision cut liver slice (PCLS) culture represents an alternative in vitro system, which benefits from retention of tissue architecture. Here, we present the first comprehensive evaluation of the PCLS method in fish (Atlantic salmon, Salmo salar L.) and validate it in the context of lipid metabolism using feeding trials, extensive transcriptomic data, and fatty acid measurements. We observe an initial period of post-slicing global transcriptome adjustment, which plateaued after 3 days in major metabolic pathways and stabilized through 9 days. PCLS fed alpha-linolenic acid (ALA) and insulin responded in a liver-like manner, increasing lipid biosynthesis gene expression. We identify interactions between insulin and ALA, where two PUFA biosynthesis genes that were induced by insulin or ALA alone, were highly down-regulated when insulin and ALA were combined. We also find that transcriptomic profiles of liver slices are exceedingly more similar to whole liver than hepatocyte monocultures, both for lipid metabolism and liver marker genes. PCLS culture opens new avenues for high throughput experimentation on the effect of "novel feed composition" and represent a promising new strategy for studying genotype-specific molecular features of metabolism.

4.
Mol Ecol ; 27(5): 1200-1213, 2018 03.
Article En | MEDLINE | ID: mdl-29431879

Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration.


Lipid Metabolism , Salmo salar/metabolism , Acclimatization , Animal Migration , Animals , Diet , Gene Duplication , Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Liver/metabolism , Molecular Sequence Annotation , Salmo salar/genetics , Salmo salar/growth & development , Transcriptome
5.
Virus Genes ; 43(3): 367-75, 2011 Dec.
Article En | MEDLINE | ID: mdl-21811852

In silico analysis of three Penaeus stylirostris densovirus (PstDNV) promoters, designated P2, P11, and P61, revealed sequence motifs including the TATA box, downstream promoter element (DPE), GC- and A-rich regions, inverted repeat, activation sequence-1 like (ASL) box, and a conserved guanosine (G) at +24. To delineate the regulatory role of these motifs on promoter activity, deletion constructs were made in a promoter assay vector, pGL3 Basic, that contains a luciferase reporter gene. Luciferase assay showed that P2 had the highest promoter activity followed by P11 and P61 in Sf9 cells. The deletions of inverted repeat, DPE, and GC-rich regions in P2 had the highest negative impact on this promoter. Deletions of DPE, G at the +24, and ASL box in P11 had the highest negative impact on this promoter activity. In P61, DPE and G at +24 are the two key regulators of transcriptional activity. Identification of the key transcriptional regulators is important in understanding the PstDNV pathogenesis in shrimp. This information is also valuable in constructing shrimp viral promoter-based vectors for protein expression in insect cell culture system as well as in shrimp.


Densovirus/genetics , Penaeidae/virology , Promoter Regions, Genetic , Animals , Base Sequence , Densovirus/isolation & purification , Molecular Sequence Data , TATA Box
...