Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
ACS Omega ; 9(1): 1463-1471, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38222500

Salicylideneanilines (SAs) are photochromic compounds that undergo enol-keto photoisomerization in the solid state. Research over the past 60 years has revealed empirically that SAs with steric and planar conformations tend to be photochromic and nonphotochromic, respectively. However, increasing counterexamples in the recent literature raise questions about the nature of the relationship between structure and photochromism in SA crystals and whether the photochromism of SA crystals is predictable. This study is the first to construct a data set on SA crystals and conduct a comprehensive analysis to investigate the relationship between molecular and crystal structures and photochromism. A data mining approach revealed that the dihedral angle is the most dominant structural parameter for photochromism, followed by the Hirshfeld surface volume. SAs with neutral bulky hydrocarbon groups, such as the tert-butyl group, tend to be photochromic because such SAs have steric conformation and a loosely packed structure. In contrast, SAs with fluorine, pyridine, and pyrazine are less likely to be photochromic due to their planar conformation and densely packed structures. The photochromism of the SA crystals in our data set was predicted with high accuracy (>85%) using machine learning. The results of this study provide a useful reference for designing SA crystals with desired photochromic properties.

2.
Chem Sci ; 15(3): 1088-1097, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38239690

Materials displaying negative thermal expansion (NTE), in contrast to typical materials with positive thermal expansion (PTE), are attractive for both fundamental research and practical applications, including the development of composites with near-zero thermal expansion. A recent data mining study revealed that approximately 34% of organic crystals may present NTE, indicating that NTE in organic crystals is much more common than generally believed. However, organic crystals that switch from NTE to PTE or vice versa have rarely been reported. Here, we report the crystal of N-3,5-di-tert-butylsalicylide-3-nitroaniline in the enol form (enol-1) as the first organic crystal in which the axial thermal expansion changes from negative to positive at around room temperature. When heated, the crystal shrinks along the a-axis below 30 °C and then it expands above 30 °C. Geometric calculations revealed that below 30 °C, the decrease in the tilt angle of the molecule exceeds the increase in the interplanar distance, causing NTE, whereas above 30 °C, the increase in the interplanar distance outweighs the decrease in the tilt angle, resulting in PTE. By combining photoisomerisation and the NTE-PTE switching induced by the photothermal effect, multistep crystal photoactuation was achieved. Moreover, actuation switching of the same crystal sample by changing atmosphere temperature was realised by utilising the NTE-PTE change. Such NTE-PTE switching without a thermal phase transition provides not only new insight into organic crystals but also a new strategy for designing crystal actuators.

3.
Chem Soc Rev ; 52(9): 3098-3169, 2023 May 09.
Article En | MEDLINE | ID: mdl-37070570

In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.

4.
Nat Commun ; 14(1): 1354, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36907883

The flourishing field of soft robotics requires versatile actuation methodology. Natural vibration is a physical phenomenon that can occur in any material. Here, we report high-speed bending of anisole crystals by natural vibration induced by the photothermal effect. Rod-shaped crystal cantilevers undergo small, fast repetitive bending (~0.2°) due to natural vibration accompanied by large photothermal bending (~1°) under ultraviolet light irradiation. The natural vibration is greatly amplified by resonance upon pulsed light irradiation at the natural frequency to realise high frequency (~700 Hz), large bending (~4°), and high energy conversion efficiency from light to mechanical energy. The natural vibration is induced by the thermal load generated by the temperature gradient in the crystal due to the photothermal effect. The bending behaviour is successfully simulated using finite element analysis. Any light-absorbing crystal can be actuated by photothermally induced natural vibration. This finding of versatile crystal actuation can lead to the development of soft robots with high-speed and high-efficient actuation capabilities.

5.
Chem Sci ; 13(31): 8989-9003, 2022 Aug 10.
Article En | MEDLINE | ID: mdl-36091219

As an emerging class of flexible materials, mechanically bendable molecular crystals are broadly classified as elastic or plastic. Nevertheless, flexible organic crystals with mutually exclusive elastic and plastic traits, with contrasting structural requirements, co-existing under different stress settings are exceptional; hence, it is imperative to establish the concurring factors that beget this rare occurrence. We report a series of halogen-substituted benzil crystals showing elastic bending (within ∼2.45% strain), followed by elastoplastic deformation under ambient conditions. Under higher stress settings, they display exceptional plastic flexibility that one could bend, twist, or even coil around a capillary tube. X-ray diffraction, microscopy, and computational data reveal the microscopic and macroscopic basis for the exciting co-existence of elastic, elastoplastic, and plastic properties in the crystals. The layered molecular arrangement and the weak dispersive interactions sustaining the interlayer region provide considerable tolerance towards breaking and making upon engaging or releasing the external stress; it enables restoring the original state within the elastic strain. Comparative studies with oxalate compounds, wherein the twisted diketo moiety in benzil was replaced with a rigid and coplanar central oxalate moiety, enabled us to understand the effect of the anisotropy factor on the crystal packing induced by the C[double bond, length as m-dash]O⋯C tetral interactions. The enhanced anisotropy depreciated the elastic domain, making the oxalate crystals more prone to plastic deformation. Three-point bending experiments and the determined Young's moduli further corroborate the co-existence of the elastic and plastic realm and highlight the critical role of the underlying structural elements that determine the elastic to plastic transformation. The work highlights the possible co-existence of orthogonal mechanical characteristics in molecular crystals and further construed the concurrent role of microscopic and macroscopic elements in attaining this exceptional mechanical trait.

6.
J Am Chem Soc ; 143(23): 8866-8877, 2021 06 16.
Article En | MEDLINE | ID: mdl-34096298

Mechanically responsive crystals have been increasingly explored, mainly based on photoisomerization. However, photoisomerization has some disadvantages for crystal actuation, such as a slow actuation speed, no actuation of thick crystals, and a narrow wavelength range. Here we report photothermally driven fast-bending actuation and simulation of a salicylideneaniline derivative crystal with an o-amino substituent in enol form. Under ultraviolet (UV) light irradiation, these thin (<20 µm) crystals bent but the thick (>40 µm) crystals did not due to photoisomerization; in contrast, thick crystals bent very quickly (in several milliseconds) due to the photothermal effect, even by visible light. Finally, 500 Hz high-frequency bending was achieved by pulsed UV laser irradiation. The generated photothermal energy was estimated based on the photodynamics using femtosecond transient absorption. Photothermal bending is caused by a nonsteady temperature gradient in the thickness direction due to the heat conduction of photothermal energy generated near the crystal surface. The temperature gradient was calculated based on the one-dimensional nonsteady heat conduction equation to simulate photothermally driven crystal bending successfully. Most crystals that absorb light have their own photothermal effects. It is expected that the creation and design of actuation of almost all crystals will be possible via the photothermal effect, which cannot be realized by photoisomerization, and the potential and versatility of crystals as actuation materials will expand in the near future.

7.
Front Robot AI ; 8: 684287, 2021.
Article En | MEDLINE | ID: mdl-34055902

Recently, soft robots, which are made of soft and light organic materials, have attracted much attention because of improved safety for daily interactions with humans. Mechanically responsive materials that can move macroscopically by external stimuli, such as light and heat, have been studied extensively over the past two decades, and they are expected to be applicable to soft robots. Among them, mechanically responsive crystals are attractive in terms of a larger Young's modulus and faster response speed compared with polymers and gels. However, it is impractical to use one piece of a single crystal as a crystal machine; it is difficult to control the size of crystals and obtain large crystals. Hybridization of crystals with polymers is one way to create actuators with more realistic movements. Herein, we report a hybrid crystal assembly in which plate-like salicylideneaniline crystals are aligned in polymer films by a "rubbing" technique, a new approach which is inexpensive, easy, and applicable to a wide range of crystals and polymers. The hybrid films bent reversibly upon alternate irradiation with ultraviolet and visible light. The hybrid films bent as fast as single crystals, even when larger than single-crystal size, showing great mechanical performance originating from the advantages of both molecular crystals (fast response time) and polymers (large size). This work enriches the development of light-driven hybrid actuators composed of molecular crystals and polymers.

...