Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Heliyon ; 6(11): e05360, 2020 Nov.
Article En | MEDLINE | ID: mdl-33163675

Natural plants derivatives have gained enormous merits in cancer therapy applications upon formulation with nanomaterials. Curcumin, as a popular research focus has acquired such improvements surpassing its disadvantageous low bioavailability. To this point, the available research data had confirmed the importance of nanomaterial type in orienting cellular response and provoking different toxicological and death mechanisms that may range from physical membrane damage to intracellular changes. This in turn underlines the poorly studied field of nanoformulation interaction with cells as the key determinant in toxicology outcomes. In this work, curcumin-AuNPs-reduced graphene oxide nanocomposite (CAG) was implemented as a model, to study the impact on cellular membrane integrity and the possible redox changes using colon cancer in vitro cell lines (HT-29 and SW-948), representing drug-responsive and resistant subtypes. Morphological and biochemical methods of transmission electron microscopy (TEM), apoptosis assay, reactive oxygen species (ROS) and antioxidants glutathione and superoxide dismutase (GSH and SOD) levels were examined with consideration to suitable protocols and vital optimizations. TEM micrographs proved endocytic uptake with succeeding cytoplasm deposition, which unlike other nanomaterials studied previously, conserved membrane integrity allowing intracellular cytotoxic mechanism. Apoptosis was confirmed with gold-standard morphological features observed in micrographs, while redox parameters revealed a time-dependent increase in ROS accompanied with regressive GSH and SOD levels. Collectively, this work demonstrates the success of graphene as a platform for curcumin intracellular delivery and cytotoxicity, and further highlights the importance of suitable in vitro methods to be used for nanomaterial validation.

2.
PLoS One ; 14(5): e0216725, 2019.
Article En | MEDLINE | ID: mdl-31086406

Nanotechnology-based antioxidants and therapeutic agents are believed to be the next generation tools to face the ever-increasing cancer mortality rates. Graphene stands as a preferred nano-therapeutic template, due to the advanced properties and cellular interaction mechanisms. Nevertheless, majority of graphene-based composites suffer from hindered development as efficient cancer therapeutics. Recent nano-toxicology reviews and recommendations emphasize on the preliminary synthetic stages as a crucial element in driving successful applications results. In this study, we present an integrated, green, one-pot hybridization of target-suited raw materials into curcumin-capped gold nanoparticle-conjugated reduced graphene oxide (CAG) nanocomposite, as a prominent anti-oxidant and anti-cancer agent. Distinct from previous studies, the beneficial attributes of curcumin are employed to their fullest extent, such that they perform dual roles of being a natural reducing agent and possessing antioxidant anti-cancer functional moiety. The proposed novel green synthesis approach secured an enhanced structure with dispersed homogenous AuNPs (15.62 ± 4.04 nm) anchored on reduced graphene oxide (rGO) sheets, as evidenced by transmission electron microscopy, surpassing other traditional chemical reductants. On the other hand, safe, non-toxic CAG elevates biological activity and supports biocompatibility. Free radical DPPH inhibition assay revealed CAG antioxidant potential with IC50 (324.1 ± 1.8%) value reduced by half compared to that of traditional citrate-rGO-AuNP nanocomposite (612.1 ± 10.1%), which confirms the amplified multi-potent antioxidant activity. Human colon cancer cell lines (HT-29 and SW-948) showed concentration- and time-dependent cytotoxicity for CAG, as determined by optical microscopy images and WST-8 assay, with relatively low IC50 values (~100 µg/ml), while preserving biocompatibility towards normal human colon (CCD-841) and liver cells (WRL-68), with high selectivity indices (≥ 2.0) at all tested time points. Collectively, our results demonstrate effective green synthesis of CAG nanocomposite, free of additional stabilizing agents, and its bioactivity as an antioxidant and selective anti-colon cancer agent.


Curcumin/chemistry , Curcumin/pharmacology , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Models, Molecular , Molecular Conformation , Oxidation-Reduction
3.
Eur J Med Chem ; 139: 349-366, 2017 Oct 20.
Article En | MEDLINE | ID: mdl-28806615

Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer.


Gold/therapeutic use , Graphite/therapeutic use , Nanocomposites/therapeutic use , Neoplasms/drug therapy , Dose-Response Relationship, Drug , Gold/chemistry , Graphite/chemistry , Humans , Molecular Structure , Nanocomposites/chemistry , Neoplasms/diagnosis , Structure-Activity Relationship
4.
PeerJ ; 5: e3513, 2017.
Article En | MEDLINE | ID: mdl-28674665

BACKGROUND: Osteoprotegerin (OPG) is used for the systemic treatment of bone diseases, although it has many side effects. The aim of this study was to investigate a newly formulated OPG-chitosan gel for local application to repair bone defects. Recent studies have reported that immunodetection of osteopontin (OPN) and osteocalcin (OC) can be used to characterise osteogenesis and new bone formation. METHODS: The osteogenic potential of the OPG-chitosan gel was evaluated in rabbits. Critical-sized defects were created in the calvarial bone, which were either left unfilled (control; group I), or filled with chitosan gel (group II) or OPG-chitosan gel (group III), with rabbits sacrificed at 6 and 12 weeks. Bone samples from the surgical area were decalcified and treated with routine histological and immunohistochemical protocols using OC, OPN, and cathepsin K (osteoclast marker) antibodies. The toxicity of the OPG-chitosan gel was evaluated by biochemical assays (liver and kidney function tests). RESULTS: The mean bone growth in defects filled with the OPG-chitosan gel was significantly higher than those filled with the chitosan gel or the unfilled group (p < 0.05). At 6 and 12 weeks, the highest levels of OC and OPN markers were found in the OPG-chitosan gel group, followed by the chitosan gel group. The number of osteoclasts in the OPG-chitosan gel group was lower than the other groups. The results of the liver and kidney functional tests indicated no signs of harmful systemic effects of treatment. In conclusion, the OPG-chitosan gel has many characteristics that make it suitable for bone repair and regeneration, highlighting its potential benefits for tissue engineering applications.

5.
PeerJ ; 4: e2229, 2016.
Article En | MEDLINE | ID: mdl-27635307

BACKGROUND: The receptor activator of nuclear factor kappa-B (RANK)/RANK ligand/osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. OPG has been used systemically in the treatment of bone diseases. In searching for more effective and safer treatment for bone diseases, we investigated newly formulated OPG-chitosan complexes, which is prepared as a local application for its osteogenic potential to remediate bone defects. METHODS: We examined high, medium and low molecular weights of chitosan combined with OPG. The cytotoxicity of OPG in chitosan and its proliferation in vitro was evaluated using normal, human periodontal ligament (NHPL) fibroblasts in 2D and 3D cell culture. The cytotoxicity of these combinations was compared by measuring cell survival with a tetrazolium salt reduction (MTT) assay and AlamarBlue assay. The cellular morphological changes were observed under an inverted microscope. A propidium iodide and acridine orange double-staining assay was used to evaluate the morphology and quantify the viable and nonviable cells. The expression level of osteopontin and osteocalcin protein in treated normal human osteoblast cells was evaluated by using Western blot. RESULTS: The results demonstrated that OPG in combination with chitosan was non-toxic, and OPG combined with low molecular weight chitosan has the most significant effect on NHPL fibroblasts and stimulates proliferation of cells over the period of treatment.

...