Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 106
1.
Microbiol Resour Announc ; 12(12): e0050623, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-37909738

Most species belonging to the diplomonad genera, Trepomonas and Hexamita, are considered to have secondarily adapted to free-living lifestyles from the parasitic ancestor. Here, we report the annotated transcriptome data of Trepomonas sp. NIES-1444 and Hexamita sp. NIES-1440, the analysis of which will provide insights into the lifestyle transitions.

2.
Microbiol Resour Announc ; 12(2): e0053922, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36695596

Aduncisulcus paluster is a free-living, unicellular flagellate belonging to the eukaryotic lineage Fornicata, which includes free-living and commensal/parasitic organisms. Here, we report the draft genome sequence of A. paluster, which provides clues for elucidating the adaptation to microaerophilic/anaerobic environments and the transition between free-living and commensal/parasitic lifestyles in Fornicata.

3.
Open Biol ; 12(4): 210376, 2022 04.
Article En | MEDLINE | ID: mdl-35414259

By clarifying the phylogenetic positions of 'orphan' protists (unicellular micro-eukaryotes with no affinity to extant lineages), we may uncover the novel affiliation between two (or more) major lineages in eukaryotes. Microheliella maris was an orphan protist, which failed to be placed within the previously described lineages by pioneering phylogenetic analyses. In this study, we analysed a 319-gene alignment and demonstrated that M. maris represents a basal lineage of one of the major eukaryotic lineages, Cryptista. We here propose a new clade name 'Pancryptista' for Cryptista plus M. maris. The 319-gene analyses also indicated that M. maris is a key taxon to recover the monophyly of Archaeplastida and the sister relationship between Archaeplastida and Pancryptista, which is collectively called 'CAM clade' here. Significantly, Cryptophyceae tend to be attracted to Rhodophyta depending on the taxon sampling (ex., in the absence of M. maris and Rhodelphidia) and the particular phylogenetic 'signal' most likely hindered the stable recovery of the monophyly of Archaeplastida in previous studies.


Eukaryota , Eukaryota/genetics , Phylogeny
4.
Parasitol Int ; 87: 102507, 2022 Apr.
Article En | MEDLINE | ID: mdl-34781012

There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.


Ape Diseases/parasitology , Malaria, Vivax/parasitology , Pan troglodytes/parasitology , Phylogeny , Plasmodium vivax/genetics , Africa , Animals , Ape Diseases/transmission , Asia , DNA, Protozoan/blood , DNA, Protozoan/isolation & purification , Feces/parasitology , Humans , Malaria, Vivax/transmission , Plasmodium vivax/classification
5.
Microorganisms ; 9(8)2021 Jul 22.
Article En | MEDLINE | ID: mdl-34442639

To detect the change during coral-dinoflagellate endosymbiosis establishment, we compared transcriptome data derived from free-living and symbiotic Durusdinium, a coral symbiont genus. We detected differentially expressed genes (DEGs) using two statistical methods (edgeR using raw read data and the Student's t-test using bootstrap resampling read data) and detected 1214 DEGs between the symbiotic and free-living states, which we subjected to gene ontology (GO) analysis. Based on the representative GO terms and 50 DEGs with low false discovery rates, changes in Durusdinium during endosymbiosis were predicted. The expression of genes related to heat-shock proteins and microtubule-related proteins tended to decrease, and those of photosynthesis genes tended to increase. In addition, a phylogenetic analysis of dapdiamide A (antibiotics) synthase, which was upregulated among the 50 DEGs, confirmed that two genera in the Symbiodiniaceae family, Durusdinium and Symbiodinium, retain dapdiamide A synthase. This antibiotic synthase-related gene may contribute to the high stress tolerance documented in Durusdinium species, and its increased expression during endosymbiosis suggests increased antibacterial activity within the symbiotic complex.

6.
Parasitol Int ; 83: 102364, 2021 Aug.
Article En | MEDLINE | ID: mdl-33915268

Apicomplexa mainly comprises parasitic species and some of them, which infect and cause severe diseases to humans and livestock, have been extensively studied due to the clinical and industrial importance. Besides, apicomplexans are a popular subject of the studies focusing on the evolution initiated by a secondary loss of photosynthesis. By interpreting the position in the tree of eukaryotes and lifestyles of the phylogenetic relatives parsimoniously, the extant apicomplexans are predicted to be the descendants of a parasite bearing a non-photosynthetic (cryptic) plastid. The plastid-bearing characteristic for the ancestral apicomplexan is further strengthened by non-photosynthetic plastids found in the extant apicomplexans. The research on apicomplexan members infecting invertebrates is much less advanced than that on the pathogens to humans and livestock. Gregarines are apicomplexans that infect diverse invertebrates and recent studies based on transcriptome data revealed the presence of cryptic plastids in a subset of the species investigated. In this study, we isolated gregarine-like organisms (GLOs) from three arthropod species and conducted transcriptome analyses on the isolated cells. A transcriptome-based, multi-gene phylogenetic analysis clearly indicated that all of the three GLOs are eugregarines. Significantly, the transcriptome data from the GLO in a centipede appeared to contain the transcripts encoding enzymes involved in the non-mevalonate pathway for isopentenyl diphosphate biosynthesis and C5 pathway for heme biosynthesis. The enzymes involved in the two plastid-localized metabolic pathways circumstantially but strongly suggest that the particular GLO possesses a cryptic plastid. The evolution of cryptic plastids in eugregarines is revised by incorporating the new data obtained from the three GLOs in this study.


Apicomplexa/metabolism , Metabolic Networks and Pathways , Plastids/metabolism
7.
Proc Biol Sci ; 287(1934): 20201538, 2020 09 09.
Article En | MEDLINE | ID: mdl-32873198

We here report the phylogenetic position of barthelonids, small anaerobic flagellates previously examined using light microscopy alone. Barthelona spp. were isolated from geographically distinct regions and we established five laboratory strains. Transcriptomic data generated from one Barthelona strain (PAP020) were used for large-scale, multi-gene phylogenetic (phylogenomic) analyses. Our analyses robustly placed strain PAP020 at the base of the Fornicata clade, indicating that barthelonids represent a deep-branching metamonad clade. Considering the anaerobic/microaerophilic nature of barthelonids and preliminary electron microscopy observations on strain PAP020, we suspected that barthelonids possess functionally and structurally reduced mitochondria (i.e. mitochondrion-related organelles or MROs). The metabolic pathways localized in the MRO of strain PAP020 were predicted based on its transcriptomic data and compared with those in the MROs of fornicates. We here propose that strain PAP020 is incapable of generating ATP in the MRO, as no mitochondrial/MRO enzymes involved in substrate-level phosphorylation were detected. Instead, we detected a putative cytosolic ATP-generating enzyme (acetyl-CoA synthetase), suggesting that strain PAP020 depends on ATP generated in the cytosol. We propose two separate losses of substrate-level phosphorylation from the MRO in the clade containing barthelonids and (other) fornicates.


Biological Evolution , Eukaryota/physiology , Phylogeny , Anaerobiosis , Eukaryota/metabolism , Mitochondria/metabolism , Organelles/metabolism
8.
Genome Biol Evol ; 12(2): 3926-3937, 2020 02 01.
Article En | MEDLINE | ID: mdl-31922581

Loss of photosynthesis is a recurring theme in eukaryotic evolution. In organisms that have lost the ability to photosynthesize, nonphotosynthetic plastids are retained because they play essential roles in processes other than photosynthesis. The unicellular algal genus Cryptomonas contains both photosynthetic and nonphotosynthetic members, the latter having lost the ability to photosynthesize on at least three separate occasions. To elucidate the evolutionary processes underlying the loss of photosynthesis, we sequenced the plastid genomes of two nonphotosynthetic strains, Cryptomonas sp. CCAC1634B and SAG977-2f, as well as the genome of the phototroph Cryptomonas curvata CCAP979/52. These three genome sequences were compared with the previously sequenced plastid genome of the nonphotosynthetic species Cryptomonas paramecium CCAP977/2a as well as photosynthetic members of the Cryptomonadales, including C. curvata FBCC300012D. Intraspecies comparison between the two C. curvata strains showed that although their genome structures are stable, the substitution rates of their genes are relatively high. Although most photosynthesis-related genes, such as the psa and psb gene families, were found to have disappeared from the nonphotosynthetic strains, at least ten pseudogenes are retained in SAG977-2f. Although gene order is roughly shared among the plastid genomes of photosynthetic Cryptomonadales, genome rearrangements are seen more frequently in the smaller genomes of the nonphotosynthetic strains. Intriguingly, the light-independent protochlorophyllide reductase comprising chlB, L, and N is retained in nonphotosynthetic SAG977-2f and CCAC1634B. On the other hand, whereas CCAP977/2a retains ribulose-1,5-bisphosphate carboxylase/oxygenase-related genes, including rbcL, rbcS, and cbbX, the plastid genomes of the other two nonphotosynthetic strains have lost the ribulose-1,5-bisphosphate carboxylase/oxygenase protein-coding genes.


Cryptophyta/genetics , Plastids/genetics , Genome, Plastid/genetics , Genomics/methods , Photosynthesis/genetics , Photosynthesis/physiology , Phylogeny
9.
ACS Omega ; 4(4): 7308-7316, 2019 Apr 30.
Article En | MEDLINE | ID: mdl-31459830

Translation elongation factor-1alpha (EF-1α) or its paralog elongation factor-like proteins (EFL) interact with an aminoacyl-transfer RNA (aa-tRNA) to play its essential role in elongation of peptide-chain during protein synthesis. Species usually have either an EF-1α or EFL protein; however, some species have both EF-1α and EFL (dual-EF-containing species). In the dual-EF-containing species, EF-1α appeared to be highly divergent in the sequence. Homology modeling and surface analysis of EF-1α and EFL were performed to examine the hypothesis that the divergent EF-1α in the dual-EF-containing eukaryotes does not strongly interact with aa-tRNA compared to the canonical EF-1α and EFL. The subsequent molecular dynamics simulations were carried out to confirm the validity of modeled structures and to analyze their stability. It was found that the molecular surfaces of the divergent EF-1α proteins were negatively charged partly, and thus they might not interact with negatively charged aa-tRNA as strongly as the canonical ones. The molecular docking simulations between EF-1α/EFL and aa-tRNA also support the hypothesis.

10.
PLoS One ; 14(5): e0217215, 2019.
Article En | MEDLINE | ID: mdl-31145739

[This corrects the article DOI: 10.1371/journal.pone.0185233.].

11.
Sci Rep ; 9(1): 7274, 2019 05 13.
Article En | MEDLINE | ID: mdl-31086239

The malaria parasite species, Plasmodium vivax infects not only humans, but also African apes. Human specific P. vivax has evolved from a single ancestor that originated from a parasite of African apes. Although previous studies have proposed phylogenetic trees positioning P. vivax (the common ancestor of human and African ape P. vivax) within the assemblages of Asian primate parasites, its position has not yet been robustly confirmed. We determined nearly complete apicoplast genome sequences from seven Asian primate parasites, Plasmodium cynomolgi (strains Ceylonensis and Berok), P. knowlesi P. fragile, P. fieldi, P. simiovale, P. hylobati, P. inui, and an African primate parasite, P. gonderi, that infects African guenon. Phylogenetic relationships of the Plasmodium species were analyzed using newly and previously determined apicoplast genome sequences. Multigene maximum likelihood analysis of 30 protein coding genes did not position P. vivax within the Asian primate parasite clade but positioned it basal to the clade, after the branching of an African guenon parasite, P. gonderi. The result does not contradict with the emerging notion that P. vivax phylogenetically originated from Africa. The result is also supported by phylogenetic analyses performed using massive nuclear genome data of seven primate Plasmodium species.


Apicoplasts/genetics , Plasmodium vivax/genetics , Africa , Animals , Asia , Genes, Protozoan/genetics , Genome, Protozoan/genetics , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/veterinary , Phylogeny , Plasmodium/genetics , Plasmodium cynomolgi/genetics , Plasmodium knowlesi/genetics , Primate Diseases/genetics , Primate Diseases/parasitology , Primates/parasitology
12.
Sci Rep ; 9(1): 4850, 2019 03 19.
Article En | MEDLINE | ID: mdl-30890720

Mitochondrial genomes exhibit diverse features among eukaryotes in the aspect of gene content, genome structure, and the mobile genetic elements such as introns and plasmids. Although the number of published mitochondrial genomes is increasing at tremendous speed, those of several lineages remain unexplored. Here, we sequenced the complete mitochondrial genome of a unicellular heterotrophic eukaryote, Marophrys sp. SRT127 belonging to the Centroheliozoa, as the first report on this lineage. The circular-mapped mitochondrial genome, which is 113,062 bp in length, encodes 69 genes typically found in mitochondrial genomes. In addition, the Marophrys mitochondrial genome contains 19 group I introns. Of these, 11 introns have genes for homing endonuclease (HE) and phylogenetic analyses of HEs have shown that at least five Marophrys HEs are related to those in green algal plastid genomes, suggesting intron transfer between the Marophrys mitochondrion and green algal plastids. We also discovered a putative mitochondrial plasmid in linear form. Two genes encoded in the circular-mapped mitochondrial genome were found to share significant similarities to those in the linear plasmid, suggesting that the plasmid was integrated into the mitochondrial genome. These findings expand our knowledge on the diversity and evolution of the mobile genetic elements in mitochondrial genomes.


Eukaryota/genetics , Genome, Mitochondrial/genetics , Chlorophyta/genetics , Evolution, Molecular , Genome, Plastid/genetics , Introns/genetics , Phylogeny , Plasmids/genetics , Plastids/genetics , Sequence Analysis, DNA
13.
Front Microbiol ; 9: 2902, 2018.
Article En | MEDLINE | ID: mdl-30555442

Coenzyme A (CoA) is an essential cofactor for numerous cellular reactions in all living organisms. In the protozoan parasite Entamoeba histolytica, CoA is synthesized in a pathway consisting of four enzymes with dephospho-CoA kinase (DPCK) catalyzing the last step. However, the metabolic and physiological roles of E. histolytica DPCK remain elusive. In this study, we took biochemical, reverse genetic, and metabolomic approaches to elucidate role of DPCK in E. histolytica. The E. histolytica genome encodes two DPCK isotypes (EhDPCK1 and EhDPCK2). Epigenetic gene silencing of Ehdpck1 and Ehdpck2 caused significant reduction of DPCK activity, intracellular CoA concentrations, and also led to growth retardation in vitro, suggesting importance of DPCK for CoA synthesis and proliferation. Furthermore, metabolomic analysis showed that suppression of Ehdpck gene expression also caused decrease in the level of acetyl-CoA, and metabolites involved in amino acid, glycogen, hexosamine, nucleic acid metabolisms, chitin, and polyamine biosynthesis. The kinetic properties of E. histolytica and human DPCK showed remarkable differences, e.g., the Km values of E. histolytica and human DPCK were 58-114 and 5.2 µM toward dephospho-CoA and 15-20 and 192 µM for ATP, respectively. Phylogenetic analysis also supported the uniqueness of the amebic enzyme compared to the human counterpart. These biochemical, evolutionary features, and physiological importance of EhDPCKs indicate that EhDPCK represents the rational target for the development of anti-amebic agents.

14.
Front Immunol ; 9: 1444, 2018.
Article En | MEDLINE | ID: mdl-30061879

In T cells, T cell receptor (TCR) signaling initiates downstream transcriptional mechanisms for T cell activation and differentiation. Foxp3-expressing regulatory T cells (Treg) require TCR signals for their suppressive function and maintenance in the periphery. It is, however, unclear how TCR signaling controls the transcriptional program of Treg. Since most of studies identified the transcriptional features of Treg in comparison to naïve T cells, the relationship between Treg and non-naïve T cells including memory-phenotype T cells (Tmem) and effector T cells (Teff) is not well understood. Here, we dissect the transcriptomes of various T cell subsets from independent datasets using the multidimensional analysis method canonical correspondence analysis (CCA). We show that at the cell population level, resting Treg share gene modules for activation with Tmem and Teff. Importantly, Tmem activate the distinct transcriptional modules for T cell activation, which are uniquely repressed in Treg. The activation signature of Treg is dependent on TCR signals and is more actively operating in activated Treg. Furthermore, by using a new CCA-based method, single-cell combinatorial CCA, we analyzed unannotated single-cell RNA-seq data from tumor-infiltrating T cells, and revealed that FOXP3 expression occurs predominantly in activated T cells. Moreover, we identified FOXP3-driven and T follicular helper-like differentiation pathways in tumor microenvironments, and their bifurcation point, which is enriched with recently activated T cells. Collectively, our study reveals the activation mechanisms downstream of TCR signals for the bifurcation of Treg and Teff differentiation and their maturation processes.

15.
PLoS One ; 13(3): e0194487, 2018.
Article En | MEDLINE | ID: mdl-29590215

The fornicata (fornicates) is a eukaryotic group known to consist of free-living and parasitic organisms. Genome datasets of two model fornicate parasites Giardia intestinalis and Spironucleus salmonicida are well annotated, so far. The nuclear genomes of G. intestinalis assemblages and S. salmonicida are small in terms of the genome size and simple in genome structure. However, an ancestral genomic structure and gene contents, from which genomes of the fornicate parasites have evolved, remains to be clarified. In order to understand genome evolution in fornicates, here, we present the draft genome sequence of a free-living fornicate, Kipferlia bialata, the divergence of which is earlier than those of the fornicate parasites, and compare it to the genomes of G. intestinalis and S. salmonicida. Our data show that the number of protein genes and introns in K. bialata genome are the most abundant in the genomes of three fornicates, reflecting an ancestral state of fornicate genome evolution. Evasion mechanisms of host immunity found in G. intestinalis and S. salmonicida are absent in the K. bialata genome, suggesting that the two parasites acquired the complex membrane surface proteins on the line leading to the common ancestor of G. intestinalis and S. salmonicida after the divergence from K. bialata. Furthermore, the mitochondrion related organelles (MROs) of K. bialata possess more complex suites of metabolic pathways than those in Giardia and in Spironucleus. In sum, our results unveil the process of reductive evolution which shaped the current genomes in two model fornicate parasites G. intestinalis and S. salmonicida.


Eukaryota/genetics , Evolution, Molecular , Genome
16.
Int J Parasitol Drugs Drug Resist ; 8(1): 125-136, 2018 04.
Article En | MEDLINE | ID: mdl-29518650

The Coenzyme A (CoA), as a cofactor involved in >100 metabolic reactions, is essential to the basic biochemistry of life. Here, we investigated the CoA biosynthetic pathway of Entamoeba histolytica (E. histolytica), an enteric protozoan parasite responsible for human amebiasis. We identified four key enzymes involved in the CoA pathway: pantothenate kinase (PanK, EC 2.7.1.33), bifunctional phosphopantothenate-cysteine ligase/decarboxylase (PPCS-PPCDC), phosphopantetheine adenylyltransferase (PPAT) and dephospho-CoA kinase (DPCK). Cytosolic enzyme PanK, was selected for further biochemical, genetic, and phylogenetic characterization. Since E. histolytica PanK (EhPanK) is physiologically important and sufficiently divergent from its human orthologs, this enzyme represents an attractive target for the development of novel anti-amebic chemotherapies. Epigenetic gene silencing of PanK resulted in a significant reduction of PanK activity, intracellular CoA concentrations, and growth retardation in vitro, reinforcing the importance of this gene in E. histolytica. Furthermore, we screened the Kitasato Natural Products Library for inhibitors of recombinant EhPanK, and identified 14 such compounds. One compound demonstrated moderate inhibition of PanK activity and cell growth at a low concentration, as well as differential toxicity towards E. histolytica and human cells.


Antiprotozoal Agents/isolation & purification , Biosynthetic Pathways/drug effects , Entamoeba histolytica/enzymology , Phosphotransferases (Alcohol Group Acceptor)/drug effects , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Amebiasis/drug therapy , Biological Products , Biosynthetic Pathways/genetics , Coenzyme A/analysis , Coenzyme A/biosynthesis , Coenzyme A/genetics , Drug Delivery Systems , Drug Discovery , Entamoeba histolytica/drug effects , Entamoeba histolytica/genetics , Entamoeba histolytica/growth & development , Epigenomics , Gene Silencing , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/isolation & purification , Peptide Synthases/genetics , Peptide Synthases/isolation & purification , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phylogeny , Small Molecule Libraries
17.
J Eukaryot Microbiol ; 65(5): 669-678, 2018 07.
Article En | MEDLINE | ID: mdl-29478272

The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome-one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte-derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid-type glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte-derived tertiary plastids: "gapC1h" acquired from the haptophyte endosymbiont and "gapC1p" inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid-type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT-derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.


Dinoflagellida/genetics , Evolution, Molecular , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Plastids/enzymology , Protozoan Proteins/genetics , Dinoflagellida/classification , Dinoflagellida/enzymology , Gene Transfer, Horizontal , Phylogeny , Plastids/genetics
18.
Genome Biol Evol ; 10(2): 427-433, 2018 02 01.
Article En | MEDLINE | ID: mdl-29360967

Recent phylogenetic analyses position certain "orphan" protist lineages deep in the tree of eukaryotic life, but their exact placements are poorly resolved. We conducted phylogenomic analyses that incorporate deeply sequenced transcriptomes from representatives of collodictyonids (diphylleids), rigifilids, Mantamonas, and ancyromonads (planomonads). Analyses of 351 genes, using site-heterogeneous mixture models, strongly support a novel super-group-level clade that includes collodictyonids, rigifilids, and Mantamonas, which we name "CRuMs". Further, they robustly place CRuMs as the closest branch to Amorphea (including animals and fungi). Ancyromonads are strongly inferred to be more distantly related to Amorphea than are CRuMs. They emerge either as sister to malawimonads, or as a separate deeper branch. CRuMs and ancyromonads represent two distinct major groups that branch deeply on the lineage that includes animals, near the most commonly inferred root of the eukaryote tree. This makes both groups crucial in examinations of the deepest-level history of extant eukaryotes.


Eukaryota/genetics , Phylogeny , Eukaryota/classification , Genomics/methods , High-Throughput Nucleotide Sequencing , Transcriptome
19.
Evol Bioinform Online ; 14: 1176934318819835, 2018.
Article En | MEDLINE | ID: mdl-30626996

To estimate the functions of mitochondria of diverse eukaryotic nonmodel organisms in which the mitochondrial proteomes are not available, it is necessary to predict the protein sequence features of the mitochondrial proteins computationally. Various prediction methods that are trained using the proteins of model organisms belonging particularly to animals, plants, and fungi exist. However, such methods may not be suitable for predicting the proteins derived from nonmodel organisms because the sequence features of the mitochondrial proteins of diversified nonmodel organisms can differ from those of model organisms that are present only in restricted parts of the tree of eukaryotes. Here, we proposed NommPred, which predicts the mitochondrial proteins of nonmodel organisms that are widely distributed over eukaryotes. We used a gradient boosting machine to develop 2 predictors-one for predicting the proteins of mitochondria and the other for predicting the proteins of mitochondrion-related organelles that are highly reduced mitochondria. The performance of both predictors was found to be better than that of the best method available.

20.
PLoS One ; 12(9): e0185233, 2017.
Article En | MEDLINE | ID: mdl-28934335

Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA) from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba.


Cockroaches/cytology , Cockroaches/genetics , Genetic Variation , Ribosomes/genetics , Animals , Phylogeny , Polymorphism, Genetic , Sequence Analysis, DNA , Species Specificity
...