Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
J Dermatol Sci ; 110(2): 61-68, 2023 May.
Article En | MEDLINE | ID: mdl-37156706

BACKGROUND: Difamilast, a topical phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective for treating atopic dermatitis (AD), but the molecular mechanism involved is unclear. Since skin barrier dysfunction including reduced expression of filaggrin (FLG) and loricrin (LOR) contributes to AD development, difamilast treatment may be able to improve this dysfunction. PDE4 inhibition increases transcriptional activity of cAMP-responsive element binding protein (CREB). Therefore, we hypothesized that difamilast may affect FLG and LOR expression via CREB in human keratinocytes. OBJECTIVE: To elucidate the mechanism by which difamilast regulates FLG and LOR expression via CREB in human keratinocytes. METHODS: We analyzed normal human epidermal keratinocytes (NHEKs) treated with difamilast. RESULTS: We observed increases of intracellular cAMP levels and CREB phosphorylation in difamilast (5 µM)-treated NHEKs. Next, we found that difamilast treatment increased mRNA and protein levels of FLG and LOR in NHEKs. Since reduced expression of keratinocyte proline-rich protein (KPRP) is reported to be involved in skin barrier dysfunction in AD, we examined KPRP expression in difamilast-treated NHEKs. We found that difamilast treatment increased mRNA and protein levels of KPRP in NHEKs. Furthermore, KPRP knockdown using siRNA transfection abolished the upregulation of FLG and LOR in difamilast-treated NHEKs. Finally, CREB knockdown canceled the upregulation of FLG, LOR, and KPRP in difamilast-treated NHEKs, indicating that PDE4 inhibition by difamilast treatment positively regulates FLG and LOR expression via the CREB-KPRP axis in NHEKs. CONCLUSION: These findings may provide further guidance for therapeutic strategies in the treatment of AD using difamilast.


Cyclic Nucleotide Phosphodiesterases, Type 4 , Dermatitis, Atopic , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/pharmacology , Filaggrin Proteins , Intermediate Filament Proteins/genetics , Keratinocytes/metabolism , Dermatitis, Atopic/genetics , Proline/metabolism , Proline/pharmacology
2.
J Clin Med ; 11(21)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36362566

Skincare products play a crucial role in preventing the dry skin induced by various causes. Certain ingredients can help to improve the efficacy of skincare products. Galactomyces ferment filtrate (GFF) is such a functional ingredient. Its use originated from the empirical observation that the hands of sake brewers who deal with yeast fermentation retain a beautiful and youthful appearance. Consequently, skincare products based on GFF are widely used throughout the world. Recent studies have demonstrated that GFF activates an aryl hydrocarbon receptor (AHR) and upregulates the expression of filaggrin, a pivotal endogenous source of natural moisturizing factors, in epidermal keratinocytes. It also activates nuclear factor erythroid-2-related factor 2 (NRF2), the antioxidative master transcription factor, and exhibits potent antioxidative activity against oxidative stress induced by ultraviolet irradiation and proinflammatory cytokines, which also accelerate inflammaging. GFF-mediated NRF2 activation downregulates the expression of CDKN2A, which is known to be overexpressed in senescent keratinocytes. Moreover, GFF enhances epidermal terminal differentiation by upregulating the expression of caspase-14, claudin-1, and claudin-4. It also promotes the synthesis of the antiinflammatory cytokine IL-37 and downregulates the expression of proallergic cytokine IL-33 in keratinocytes. In addition, GFF downregulates the expression of the CXCL14 and IL6R genes, which are involved in inflammaging. These beneficial properties might underpin the potent barrier-protecting and anti-inflammaging effects of GFF-containing skin formulae.

3.
Front Immunol ; 13: 745997, 2022.
Article En | MEDLINE | ID: mdl-35663970

Interleukin (IL)-37 suppresses systemic and local inflammation. It is expressed in the epidermis, the external layer of the skin, and is decreased in inflammatory skin diseases including atopic dermatitis (AD) and psoriasis. Therefore, an agent applied topically on the skin that can increase IL-37 could be promising for treating AD and psoriasis; however, the mechanism regulating IL-37 remains largely unknown. Given that IL-37 expression is induced in differentiated keratinocytes, a major component of the epidermis, and that activation of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, promotes keratinocyte differentiation, we hypothesized that AHR might be involved in the IL-37 expression in human keratinocytes. We analyzed normal epidermal human keratinocytes (NHEKs) treated with tapinarof and Galactomyces ferment filtrate (GFF), which are potent AHR modulators. We found that tapinarof and GFF upregulated IL-37 in NHEKs, which was canceled by the knockdown of AHR using siRNA transfection, indicating that AHR mediates IL-37 expression in NHEKs. Furthermore, we found that the knockdown of IL-37 resulted in the upregulation of IL-33, an alarmin cytokine with crucial roles in the pathogenesis of AD and psoriasis. These findings suggest that IL-37 negatively regulates IL-33 expression in NHEKs. Finally, we examined whether tapinarof and GFF treatment modulates IL-33 expression in NHEKs. Such treatment inhibited IL-33 expression, which was partially reversed by the knockdown of either AHR or IL-37. Taken together, our findings provide the first evidence that tapinarof and GFF could have potential to prevent IL-33-overexpressing disorders such as AD and psoriasis via the AHR/IL-37 axis.


Dermatitis, Atopic , Dermatologic Agents , Psoriasis , Dermatitis, Atopic/metabolism , Humans , Interleukin-33/metabolism , Keratinocytes/metabolism , Psoriasis/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Resorcinols , Stilbenes
4.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article En | MEDLINE | ID: mdl-35408826

Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.


Dermatitis, Atopic , Animals , Chemokines/metabolism , Cytokines/metabolism , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/etiology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-4/metabolism , MAP Kinase Signaling System , Mice , Skin/metabolism
5.
J Clin Med ; 10(23)2021 Nov 29.
Article En | MEDLINE | ID: mdl-34884312

Psoriasis is a chronic inflammatory skin disease, and its immune mechanism has been profoundly elucidated. Biologics targeting interleukin (IL)-23 have prevented the development of psoriasis. As major sources of IL-23, dendritic cells (DCs) play a pivotal role in psoriasis; however, the regulatory mechanism of IL-23 in DCs remains unclear. IL-36γ was reported to reflect the disease activity of psoriasis. Therefore, we hypothesized that IL-36γ may affect IL-23 production in DCs. To reveal the mechanism by which IL-36γ controls IL-23 production in DCs, we analyzed murine bone marrow-derived DCs (BMDCs) stimulated with IL-36γ. IL-36γ stimulation upregulated the mRNA and protein expression of Nfkbiz in BMDCs. Nfkbiz knockdown using siRNA transfection partially inhibited the upregulation of IL-23 mRNA expression induced by IL-36γ stimulation. Since NF-κB signaling regulates Nfkbiz expression and the anti-diabetic agent metformin reportedly modulates NF-κB signaling, we examined the effect of metformin treatment on IL-36γ-induced IL-23 production. Metformin treatment impaired the phosphorylation of NF-κB induced by IL-36γ stimulation with the subsequent downregulation of Nfkbiz, resulting in the inhibition of IL-23 production in BMDCs. These data provided evidence that metformin treatment can inhibit IL-36γ-mediated IL-23 production in BMDCs, which might contribute to the prevention of psoriasis.

6.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article En | MEDLINE | ID: mdl-33321923

Skin barrier dysfunction, including reduced filaggrin (FLG) and loricrin (LOR) expression, plays a critical role in atopic dermatitis (AD) development. Since aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, mediates keratinocyte differentiation, it is a potential target for AD treatment. Recently, clinical studies have shown that tapinarof, an AHR modulator, attenuated the development of AD. To examine the molecular mechanism involved in this, we analyzed tapinarof-treated normal human epidermal keratinocytes (NHEKs). Tapinarof upregulated FLG and LOR mRNA and protein expression in an AHR-dependent manner. Tapinarof also induced the secretion of IL-24, a cytokine that activates Janus kinase (JAK)-signal transducer and activator of transcription (STAT), leading to the downregulation of FLG and LOR expression. Knockdown of either IL-24 or STAT3 expression by small interfering RNA (siRNA) transfection augmented the upregulation of FLG and LOR expression induced by tapinarof, suggesting that inhibition of the IL-24/STAT3 axis during AHR activation supports the improvement of skin barrier dysfunction. Furthermore, tapinarof alone could restore the downregulation of FLG and LOR expression induced by IL-4, a key cytokine of AD, and its combination with JAK inhibitors enhanced this effect. These findings provide a new strategy for treating AD using AHR modulators and JAK inhibitors.


Cell Differentiation , Dermatitis, Atopic/metabolism , Interleukins/metabolism , Keratinocytes/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Resorcinols/pharmacology , Stilbenes/pharmacology , Cells, Cultured , Filaggrin Proteins , Humans , Interleukins/genetics , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Janus Kinases/metabolism , Keratinocytes/cytology , Keratinocytes/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
7.
Cell Death Discov ; 6: 11, 2020.
Article En | MEDLINE | ID: mdl-32194991

Psoriasis is a systemic inflammatory disease significantly associated with comorbidities including type 2 diabetes mellitus (T2DM). Metformin is utilized as a first-line agent for treating T2DM. Although metformin reportedly inhibits mature IL-1ß secretion via NLRP3 inflammasome in macrophages of T2DM patients, it remains unclear whether it affects skin inflammation in psoriasis. To test this, we analysed normal human epidermal keratinocytes (NHEKs), a major skin component, stimulated with the key mediators of psoriasis development, TNF-α and IL-17A. This stimulation induced the upregulation of pro-IL-1ß mRNA and protein levels, and subsequently mature IL-1ß secretion, which was inhibited by metformin treatment. To further reveal the mechanism involved, we examined how metformin treatment affected NLRP3 inflammasome activated by TNF-α and IL-17A stimulation. We found that this treatment downregulated caspase-1 expression, a key mediator of NLRP3 inflammasome. Furthermore, inhibitors of AMPK and SIRT1 abrogated the downregulation of caspase-1 induced by metformin treatment, indicating that AMPK and SIRT1 are essential for the inhibitory effect on NLRP3 inflammasome in NHEKs. As IL-1ß stimulation induced upregulation of IL-36γ, CXCL1, CXCL2, CCL20, S100A7, S100A8 and S100A9 mRNA and protein levels in NHEKs, we examined whether metformin treatment affects such gene expression. Metformin treatment inhibited upregulation of IL-36γ, CXCL1, CXCL2, CCL20, S100A7, S100A8 and S100A9 mRNA and protein levels induced by TNF-α and IL-17A stimulation. Finally, we examined whether metformin administration affected psoriasis development in an imiquimod-induced mouse psoriasis model. Oral metformin treatment significantly decreased ear thickness, epidermal hyperplasia and inflammatory cell infiltration. A cytokine profile in the epidermis under metformin treatment showed that IL-1ß, Cxcl1, Cxcl2, S100a7, S100a8 and S100A9 mRNA levels were downregulated compared with control levels. These results indicate that metformin administration prevented psoriasis development in vivo. Collectively, our findings suggest that metformin-mediated anti-psoriatic effects on the skin have the potential for treating psoriasis in T2DM patients.

8.
J Clin Med ; 9(3)2020 Mar 24.
Article En | MEDLINE | ID: mdl-32214018

BACKGROUND: IL-33, one of the IL-1 superfamily cytokines, has been shown to be associated with pruritus and inflammation in atopic dermatitis (AD). Furthermore, IL-33 production derived from keratinocytes reportedly has a crucial role in the development of AD; however, the mechanism of IL-33 expression has not been fully understood. METHODS: We analyzed IL-33 expression in normal human epidermal keratinocytes (NHEKs) treated with IL-4. RESULTS: IL-4 induced the upregulation of IL-33 expression in NHEKs. Based on the findings 1) that ovo-like 1 (OVOL1), a susceptible gene of AD, upregulates filaggrin (FLG) and loricrin (LOR) expression in NHEKs and 2) that reduced expression of FLG and LOR leads to production of IL-1 superfamily cytokines, we examined the involvement of OVOL1 in IL-33 expression in NHEKs. Knockdown of OVOL1 induced upregulation of IL-33 expression. Moreover, because Glyteer, an activator of aryl hydrocarbon receptor (AHR), reportedly upregulates OVOL1 expression, we examined whether treatment with Glyteer inhibited IL-33 expression in NHEKs. Treatment with Glyteer inhibited IL-4-induced upregulation of IL-33 expression, which was canceled by knockdown of either AHR or OVOL1. CONCLUSIONS: Activation of the AHR-OVOL1 axis inhibits IL-4-induced IL-33 expression, which could be beneficial for the treatment of AD.

9.
Allergol Int ; 69(3): 412-416, 2020 Jul.
Article En | MEDLINE | ID: mdl-32037147

Atopic dermatitis (AD) is a common eczematous skin disorder characterized by skin inflammation, barrier disruption, chronic pruritus and marked scratching. Th2 cytokines, especially IL-13, play a pathogenic role in AD. IL-13 signals via a heterodimeric receptor composed of IL-4Rα and IL-13 Rα1. A second receptor, IL-13 Rα2, binds to IL-13 with high affinity, but it works as a decoy receptor. IL-13 Rα2 is overexpressed in the lesional skin of AD. Notably, mechanical scratching, as well as IL-13 itself, also upregulates IL-13 Rα2 expression. The scratch-induced IL-13 Rα2 upregulation may attenuate the IL-13-mediated epidermal barrier dysfunction and dermal fibrosis. Recent studies stress an importance of another IL-13 Rα2 ligand, chitinase 3-like 1 or YKL-40 in Th2 differentiation. However, the implications of increased IL-13 Rα2 levels remain elusive in AD. In this review, we summarize the recent topics on IL-13 Rα2 in atopic skin inflammation.


Dermatitis, Atopic/etiology , Disease Susceptibility , Interleukin-13 Receptor alpha1 Subunit/genetics , Animals , Biomarkers , Cytokines/metabolism , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/therapy , Gene Expression Regulation , Humans , Interleukin-13/metabolism , Interleukin-13 Receptor alpha1 Subunit/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Int J Mol Sci ; 21(2)2020 Jan 09.
Article En | MEDLINE | ID: mdl-31936670

Epidermal keratinocytes represent a rich source of C-C motif chemokine 20 (CCL20) and recruit CCR6+ interleukin (IL)-17A-producing T cells that are known to be pathogenic for psoriasis. A previous study revealed that scratch injury on keratinocytes upregulates CCL20 production, which is implicated in the Koebner phenomenon characteristically seen in psoriasis patients. However, the molecular mechanisms leading to scratch-induced CCL20 production remain elusive. In this study, we demonstrate that scratch injury upregulates the phosphorylation of epidermal growth factor receptor (EGFR) and that the specific EGFR inhibitor PD153035 attenuates scratch-induced CCL20 upregulation in an extracellular signal-related kinase (ERK)-dependent, and to a lesser extent, a c-Jun N-terminal kinase (JNK)-dependent but p38 mitogen-activated protein kinase (MAPK)-independent manner. Immunoreactive CCL20 was visualized in the keratinocytes that lined the scratched wound. IL-17A also induced the phosphorylation of EGFR and further augmented scratch-induced CCL20 upregulation. The EGFR-ERK/JNK-CCL20 pathway in scratched keratinocytes may explain why Koebnerization is frequently seen in psoriasis patients.


Chemokine CCL20/metabolism , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Keratinocytes/metabolism , Psoriasis/metabolism , Signal Transduction , Cell Line , ErbB Receptors/antagonists & inhibitors , Humans , Interleukin-17/metabolism , Keratinocytes/pathology , Male , Phosphorylation , Up-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Int J Mol Sci ; 20(21)2019 Oct 31.
Article En | MEDLINE | ID: mdl-31683543

The aryl hydrocarbon receptor (AHR)/AHR-nuclear translocator (ARNT) system is a sensitive sensor for small molecular, xenobiotic chemicals of exogenous and endogenous origin, including dioxins, phytochemicals, microbial bioproducts, and tryptophan photoproducts. AHR/ARNT are abundantly expressed in the skin. Once activated, the AHR/ARNT axis strengthens skin barrier functions and accelerates epidermal terminal differentiation by upregulating filaggrin expression. In addition, AHR activation induces oxidative stress. However, some AHR ligands simultaneously activate the nuclear factor-erythroid 2-related factor-2 (NRF2) transcription factor, which is a master switch of antioxidative enzymes that neutralizes oxidative stress. The immunoregulatory system governing T-helper 17/22 (Th17/22) and T regulatory cells (Treg) is also regulated by the AHR system. Notably, AHR agonists, such as tapinarof, are currently used as therapeutic agents in psoriasis and atopic dermatitis. In this review, we summarize recent topics on AHR related to atopic dermatitis and psoriasis.


Dermatitis, Atopic/genetics , Polymorphism, Single Nucleotide , Psoriasis/genetics , Receptors, Aryl Hydrocarbon/genetics , Animals , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Filaggrin Proteins , Humans , Oxidative Stress/immunology , Psoriasis/immunology , Psoriasis/metabolism , Receptors, Aryl Hydrocarbon/immunology , Receptors, Aryl Hydrocarbon/metabolism , Skin/immunology , Skin/metabolism , Skin/pathology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
13.
Int J Mol Sci ; 20(16)2019 Aug 20.
Article En | MEDLINE | ID: mdl-31434203

Severe pruritus is a characteristic feature of atopic dermatitis (AD) and is closely related to its activity. Recent studies have shown that IL-31 is a key determinant of pruritus in AD. Anti-IL-31 receptor alpha (IL-31RA) antibody treatment has also been reported to improve pruritus clinically, subsequently contributing to the attenuation of AD disease activity. Therefore, IL-31 has been thought to be an important cytokine for regulating pruritus and AD disease activity; however, how IL-31 is involved in the immune response in AD has remained largely unknown. Epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) derived from bone marrow cells have been reported to play a critical role in AD pathogenesis. LCs and DCs produce Ccl 17 and Ccl 22, which chemoattract Th2 cells, leading to AD development. Therefore, we aimed to clarify how IL-31/IL-31RA interaction affects Ccl 17 and Ccl 22 production. To test this, we analyzed murine bone marrow-derived DCs (BMDCs) stimulated with IL-4, an important cytokine in AD development. We found that IL-31RA expression was upregulated by IL-4 stimulation in a dose-dependent manner in BMDCs. Furthermore, IL-31 upregulates Ccl 17 and Ccl 22 production in the presence of IL-4, whereas IL-31 stimulation alone did not produce Ccl 17 and Ccl 22. These findings suggest that IL-4 mediates IL-31RA expression and IL-31/IL-31RA interaction augments Ccl 17 and Ccl 22 production in BMDCs, which promotes Th2-deviated immune response in AD. Since we previously reported that soybean tar Glyteer, an aryl hydrocarbon receptor (AHR) ligand, impairs IL-4/Stat 6 signaling in BMDCs, we examined whether Glyteer affects IL-31RA expression induced by IL-4 stimulation. Glyteer inhibited upregulation of IL-31RA expression induced by IL-4 stimulation in a dose-dependent manner. Glyteer also inhibited Ccl 17 and Ccl 22 production induced by IL-4 and IL-31 stimulation. Taken together, these findings suggest that Glyteer treatment may improve AD disease activity by impairing IL-31/IL-31RA interaction in DCs.


Dendritic Cells/metabolism , Dermatitis, Atopic/metabolism , Interleukin-4/pharmacology , Interleukins/metabolism , Receptors, Interleukin/metabolism , Animals , Dendritic Cells/drug effects , Dermatitis, Atopic/drug therapy , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Interleukin-4/therapeutic use , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
14.
Int J Mol Sci ; 20(13)2019 Jul 06.
Article En | MEDLINE | ID: mdl-31284553

The vicious itch-scratch cycle is a cardinal feature of atopic dermatitis (AD), in which IL-13 signaling plays a dominant role. Keratinocytes express two receptors: The heterodimeric IL-4Rα/IL-13Rα1 and IL-13Rα2. The former one transduces a functional IL-13 signal, whereas the latter IL-13Rα2 works as a nonfunctional decoy receptor. To examine whether scratch injury affects the expression of IL-4Rα, IL-13Rα1, and IL-13Rα2, we scratched confluent keratinocyte sheets and examined the expression of three IL-13 receptors using quantitative real-time PCR (qRT-PCR) and immunofluorescence techniques. Scratch injuries significantly upregulated the expression of IL13RA2 in a scratch line number-dependent manner. Scratch-induced IL13RA2 upregulation was synergistically enhanced in the simultaneous presence of IL-13. In contrast, scratch injuries did not alter the expression of IL4R and IL13RA1, even in the presence of IL-13. Scratch-induced IL13RA2 expression was dependent on ERK1/2 and p38 MAPK signals. The expression of IL-13Rα2 protein was indeed augmented in the scratch edge area and was also overexpressed in lichenified lesional AD skin. IL-13 inhibited the expression of involucrin, an important epidermal terminal differentiation molecule. IL-13-mediated downregulation of involucrin was attenuated in IL-13Rα2-overexpressed keratinocytes, confirming the decoy function of IL-13Rα2. Our findings indicate that scratching upregulates the expression of the IL-13 decoy receptor IL-13Rα2 and counteracts IL-13 signaling.


Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13/metabolism , Keratinocytes/metabolism , Signal Transduction , Up-Regulation , Dermatitis, Atopic/pathology , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Keratinocytes/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Precursors/metabolism , Signal Transduction/drug effects , Skin/pathology , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
15.
J Dermatol Sci ; 94(1): 244-251, 2019 Apr.
Article En | MEDLINE | ID: mdl-31010609

BACKGROUND: Scratch injury induces Koebner phenomenon in psoriasis. Smoking is also a risk factor for psoriasis. Keratinocytes can produce various psoriasis-related molecules including TNF, IL1 A, IL1B, IL6, IL12B, IL17C, IL23 A, IL36 A, IL36B, IL36 G, CXCL1, CXCL2, CXCL8, CXCL9, CXCL10, CCL20, IFNB, and CAMP. However, the scratch-induced molecular profiling remains elusive. OBJECTIVE: To profile the induction pattern of above-mentioned psoriasis-related and keratinocyte-derived molecules by scratch injury in the presence or absence of anti-psoriatic drugs or benzo[a]pyrene, a major environmental pollutant of tobacco smoke. METHODS: Confluent normal human keratinocytes were scratched and molecules were assayed by qRT-PCR, ELISA and Western blotting with or without drugs and benzo[a]pyrene. RESULTS: Among the 18 molecules, the scratch injury on a confluent keratinocyte sheet significantly and selectively upregulated the mRNA expression of four cyto/chemokines, CXCL8, CCL20, IL36G, and TNF, in a scratch-line-number-dependent manner under either low- or high-calcium condition. However, significant protein secretion was only demonstrated for CXCL8 and CCL20. The IL36 G protein was not secreted, but its intracellular level was significantly upregulated by scratch injury, whereas neither the secretion nor the intracellular level of TNF protein was affected by scratch injury. Dexamethasone, but not maxacalcitol nor the phosphodiesterase 4 inhibitor apremilast, partially inhibited the CXCL8 and CCL20 secretion. Benzo[a]pyrene significantly and synergistically enhanced the scratch-induced CCL20 secretion that may explain why smoking is a risk factor for psoriasis. CONCLUSION: CCL20 and to a less extent CXCL8 may play a key role in triggering the Koebner phenomenon after scratch injury to keratinocytes.


Chemokine CCL20/metabolism , Interleukin-8/metabolism , Psoriasis/pathology , Skin/injuries , Humans , Interleukin-1/metabolism , Keratinocytes/pathology , Skin/cytology , Skin/pathology
16.
G Ital Dermatol Venereol ; 154(1): 37-41, 2019 Feb.
Article En | MEDLINE | ID: mdl-30035475

Ultraviolet B (UVB) irradiation activates aryl hydrocarbon receptor (AHR), generates reactive oxygen species (ROS) and mediates photocarcinogenesis and photoaging. 6-Formylindolo[3,2-b]carbazole (FICZ) is a tryptophan photoproduct generated by UVB exposure. FICZ exhibits similar biological effects to UVB, including AHR ligation and ROS production. FICZ also acts as a potent photosensitizer for UVA and the production of ROS is synergistically augmented in the simultaneous presence of FICZ and UVA. In contrast, FICZ upregulates the expression of terminal differentiation molecules such as filaggrin and loricrin via AHR. In parallel with this, the administration of FICZ inhibits skin inflammation in a murine psoriasis and dermatitis model. In this article, we summarize the harmful and beneficial aspects of FICZ in skin pathology.


Carbazoles/metabolism , Skin Diseases/pathology , Ultraviolet Rays/adverse effects , Animals , Carbazoles/radiation effects , Cell Differentiation/radiation effects , Disease Models, Animal , Filaggrin Proteins , Humans , Keratinocytes/cytology , Keratinocytes/radiation effects , Mice , Oxidative Stress/physiology , Oxidative Stress/radiation effects , Reactive Oxygen Species/radiation effects , Receptors, Aryl Hydrocarbon/radiation effects , Skin Diseases/etiology , Tryptophan/metabolism , Tryptophan/radiation effects
17.
Acta Derm Venereol ; 98(10): 918-923, 2018 Nov 05.
Article En | MEDLINE | ID: mdl-29972223

Aryl hydrocarbon receptor (AHR) is a chemical sensor that is expressed abundantly in epidermal keratinocytes. Oxidative AHR ligands induce the production of reactive oxygen species. However, antioxidant AHR ligands inhibit reactive oxygen species generation via activation of nuclear factor-erythroid 2-related factor-2, which is a master switch for antioxidative signalling. In addition, AHR signalling accelerates epidermal terminal differentiation, but excessive acceleration by oxidative ligands, such as dioxins, may induce chloracne and inflammation. However, antioxidative phytochemical ligands induce the beneficial acceleration of epidermal differentiation that repairs skin barrier disruption. The upregulated expression of differentiation molecules, such as filaggrin, is mediated via the AHR-OVOL1 axis. This AHR-OVOL1 system is capable of counteracting skin barrier dysfunction in T-helper type 2-shifted inflammation. This article reviews the dynamic and multifaceted role of AHR in epidermal biology and discusses the potential use of antioxidative phytochemical ligands for AHR in inflammatory skin diseases, such as atopic dermatitis.


Antioxidants/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Epidermal Cells/physiology , Phytochemicals/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/metabolism , Cell Differentiation , Dermatitis, Atopic/drug therapy , Filaggrin Proteins , Humans , Intermediate Filament Proteins/metabolism , Keratinocytes , Ligands , Membrane Proteins/metabolism , Oxidative Stress , Signal Transduction
18.
Int J Mol Sci ; 19(6)2018 Jun 04.
Article En | MEDLINE | ID: mdl-29866992

Rhodiola species are antioxidative, salubrious plants that are known to inhibit oxidative stress induced by ultraviolet and γ-radiation in epidermal keratinocytes. As certain phytochemicals activate aryl hydrocarbon receptors (AHR) or OVO-like 1 (OVOL1) to upregulate the expression of epidermal barrier proteins such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL), we investigated such regulation by Rhodiola crenulata root extract (RCE). We demonstrated that RCE induced FLG and LOR upregulation in an AHR-OVOL1-dependent fashion. However, RCE-mediated IVL upregulation was AHR-dependent but OVOL1-independent. Coordinated upregulation of skin barrier proteins by RCE via AHR may be beneficial in the management of barrier-disrupted inflammatory skin diseases such as atopic dermatitis.


DNA-Binding Proteins/metabolism , Intermediate Filament Proteins/genetics , Keratinocytes/drug effects , Membrane Proteins/genetics , Plant Extracts/pharmacology , Protein Precursors/genetics , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/metabolism , Cells, Cultured , Epidermis , Filaggrin Proteins , Gene Expression Regulation , Humans , Keratinocytes/metabolism , Plant Roots/chemistry , Rhodiola/chemistry , Signal Transduction , Up-Regulation
20.
Int J Mol Sci ; 19(4)2018 Apr 12.
Article En | MEDLINE | ID: mdl-29649105

Atopic dermatitis (AD) is a common inflammatory skin disease. Recent studies have revealed the involvement of T helper (Th)2 cytokines including Interleukin 4 (IL-4) in the pathogenesis of AD. Since epidermal Langerhans cells (LCs) and dermal myeloid dendritic cells (DCs) produce CCL17 and CCL22 that chemoattract Th2 cells, interfering with CCL17 and CCL22 production from LCs and dermal myeloid DCs may be beneficial in the treatment of AD. To investigate this, we stimulated murine bone marrow-derived DCs (BMDCs) with IL-4. IL-4 stimulation produced Ccl17 and Ccl22, which was attenuated by soybean tar Glyteer, a known aryl hydrocarbon receptor (Ahr) activator. Notably, Glyteer treatment blocked the nuclear translocation of Stat6 induced by IL-4 stimulation, suggesting that this treatment impairs the IL-4/Stat6 signaling pathway in BMDCs. Unexpectedly, Glyteer treatment did not potently upregulate the expression of Cyp1a1, a specific Ahr-responsive gene, suggesting that its inhibitory machinery for Ccl17 and Ccl22 expression is likely to operate in an Ahr-independent manner. These findings indicate that Glyteer may exhibit therapeutic potential for AD by downregulating the CCL17 and CCL22 production from DCs in a Th2-deviated microenvironment.


Bone Marrow Cells/cytology , Dendritic Cells/cytology , Down-Regulation , Interleukin-4/pharmacology , Signal Transduction/drug effects , Tars/pharmacology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Chemokine CCL17/metabolism , Chemokine CCL22/metabolism , Culture Media/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Humans , Mice , Models, Biological , STAT6 Transcription Factor/metabolism
...