Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Chem Asian J ; 18(23): e202300804, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37737043

The versatile coordinating nature of N,S bidentate ligands is of great importance in medicinal chemistry imparting stability and enhancing biological properties of the metal complexes. Phenylthiocarbamide-based N,S donor Schiff bases converted into RuII /OsII (cymene) complexes and characterized by spectroscopic techniques and elemental analysis. The hydrolytic stability of metal complexes to undergo metal-halide ligand exchange reaction was confirmed both by the DFT and NMR experimentation. The ONIOM (QM/MM) study confirmed the histone protein targeting nature of aqua/hydroxido complex 2 aH with an excellent binding energy of -103.19 kcal/mol. The antiproliferative activity against a panel of cancer cells A549, MCF-7, PC-3, and HepG2 revealed that ruthenium complexes 1 a-3 a were more cytotoxic than osmium complexes and their respective ligands 1-3 as well. Among these ruthenium cymene complex bearing sulfonamide moiety 2 a proved a strong cytotoxic agent and showed excellent correlation of cellular accumulation, lipophilicity, and drug-likeness to the anticancer activity. Moreover, the favorable physiochemical properties such as bioavailability and gastrointestinal absorption of ligand 2 also supported the development of Ru complex 2 a as an orally active anticancer metallodrug.


Antineoplastic Agents , Coordination Complexes , Ruthenium , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cymenes/chemistry , Ligands , Ruthenium/pharmacology , Ruthenium/chemistry , Schiff Bases/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Article En | MEDLINE | ID: mdl-37513821

Alzheimer's disease (AD) is a progressive neurological illness that is distinguished clinically by cognitive and memory decline and adversely affects the people of old age. The treatments for this disease gained much attention and have prompted increased interest among researchers in this field. As a springboard to explore new anti-Alzheimer's chemical prototypes, the present study was carried out for the synthesis of benzoxazole-oxadiazole analogues as effective Alzheimer's inhibitors. In this research work, we have focused our efforts to synthesize a series of benzoxazole-oxadiazole (1-19) and evaluating their anti-Alzheimer properties. In addition, the precise structures of synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR and HREI-MS. To find the anti-Alzheimer potentials of the synthesized compounds (1-19), in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), inhibitory activities were performed using Donepezil as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were due to different substitution patterns of substituent(s) at the variable position of both acetophenone aryl and oxadiazole aryl rings. The results of the anti-Alzheimer assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 5.80 ± 2.18 to 40.80 ± 5.90 µM (against AChE) and 7.20 ± 2.30 to 42.60 ± 6.10 µM (against BuChE) as compared to standard Donepezil drug (IC50 = 33.65 ± 3.50 µM (for AChE) and 35.80 ± 4.60 µM (for BuChE), respectively. Specifically, analogues 2, 15 and 16 were identified to be significantly active, even found to be more potent than standard inhibitors with IC50 values of 6.40 ± 1.10, 5.80 ± 2.18 and 6.90 ± 1.20 (against AChE) and 7.50 ± 1.20, 7.20 ± 2.30 and 7.60 ± 2.10 (against BuChE). The results obtained were compared to standard drugs. These findings reveal that benzoxazole-oxadiazole analogues act as AChE and BuChE inhibitors to develop novel therapeutics for treating Alzheimer's disease and can act as lead molecules in drug discovery as potential anti-Alzheimer agents.

3.
J Phys Chem A ; 127(19): 4245-4258, 2023 May 18.
Article En | MEDLINE | ID: mdl-37155274

Enantiomers have the same physical properties but different chemical properties due to the difference in the orientation of groups in space and thus Chiral discrimination is quite necessary, as an enantiomer of drug can have lethal effects. In this study, we used the CC2 cage for chiral discrimination of amino acids using density functional theory. The results indicated the physisorption of amino acids in the central cavity of the cage. Among the four selected amino acids, proline showed maximum interactions with the cage and maximum chiral discrimination energy is also observed in the case of proline that is 2.78 kcal/mol. Quantum theory of atoms in molecules and noncovalent interaction index analyses showed that the S enantiomer in each case has maximum interactions. The charge transfer between the analyte and surface is further studied through natural bond orbital analysis. It showed sensitivity of cage for both enantiomers, but a more pronounced effect is seen for S enantiomers. In frontier molecular orbital analysis, the least EH-L gap is observed in the case of R proline with a maximum charge transfer of -0.24 e-. Electron density difference analysis is carried out to analyze the pattern of the charge distribution. The partial density of state analysis is computed to understand the contribution of each enantiomer in overall density of the complexes. Our results show that S-CC2 porous organic cages have a good ability to differentiate between two enantiomers. S-CC2 porous organic cages efficiently differentiated the S enantiomer from the R enantiomers of selected amino acids.

4.
ACS Omega ; 8(2): 1923-1928, 2023 Jan 17.
Article En | MEDLINE | ID: mdl-36687041

We report the determination of the absolute configuration of a diterpenoid, namely, ballonigrin lactone A (BLA), by comparison of the computed optical rotations, [α]D, of its two diastereomers using density functional theory (DFT) calculations to the experimental [α]D value of +22.4. One of the diastereomers having configurations 4S, 5R, 6S, 10S, 15S was named "α-BLA," and the other one with configuration 4S, 5R, 6S, 10S, 15R was called "ß-BLA". Six conformers for each diastereomer (α-BLA and ß-BLA) of BLA were identified through their conformational analysis. [α]D values of these six conformations for each diastereomer were calculated using DFT at the mPW1PW91/6-311G(d,p)/SMDChloroform level of theory, leading to the conformationally averaged [α]D values of -96.8 for α-BLA and +65.1 for ß-BLA. Thus, it was found that the experimental [α]D value of +22.4 was of 4S, 5R, 6S, 10S, 15R, i.e., ß-BLA. Experimental and computed nuclear magnetic resonance (NMR) data were also compared, and this comparison was in accordance with the conclusion drawn from the comparison of [α]D values. Finally, the results were augmented with the calculation of the DP4 analysis, and the probability obtained also endorsed our earlier calculations.

5.
ACS Omega ; 7(51): 47671-47679, 2022 Dec 27.
Article En | MEDLINE | ID: mdl-36569212

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is considered a global public health concern since it causes high morbidity and mortality. Recently, it has been reported that repurposed anti-COVID-19 drugs might interact with multidrug resistance ABC transporter, particularly ABCB1. In the current study, a series of thiourea derivatives were screened as potential inhibitors against SARS-CoV-2 by targeting the attachment of receptor binding domain (RBD) of spike protein with ACE2 and their interaction with human ABCB1 has also been explored. The results indicated strong impairment of RBD-ACE2 attachment by BB IV-46 with a percentage inhibition of 95.73 ± 1.79% relative to the positive control, while BB V-19 was proven inactive with a percentage inhibition of 50.90 ± 0.84%. The same compound (BB IV-46) interacted with ABCB1 and potentially inhibited cell proliferation of P-gp overexpressing cell line with an IC50 value of 4.651 ± 0.06 µM. BB V-19, which was inactive against SARS-CoV-2, was inactive against ABCB1 with a higher IC50 value of 35.72 ± 0.09 µM. Furthermore, molecular dynamics simulations followed by binding free-energy analysis explored the binding interaction of BB IV-46 and BB V-19 to RBD region of spike protein of SARS-CoV-2. The results confirmed that compound BB IV-46 interacted strongly with RBD with a significant binding energy (-127.0 kJ/mol), while BB V-19 interacted weakly (-29.30 kJ/mol). The key interacting residues of the RBD involved in binding included Leu441, Lys444, and Tyr449. This study highlights the importance of BB IV-46 against SARS-CoV-2; however, further pharmacokinetic and pharmacodynamics studies are needed to be done.

6.
RSC Adv ; 12(7): 3909-3923, 2022 Jan 28.
Article En | MEDLINE | ID: mdl-35425404

In the current study, a covalent triazine framework (CTF-0) was evaluated as an electrochemical sensor against industrial pollutants i.e., O3, NO, SO2, SO3, and CO2. The deep understanding of analytes@CTF-0 complexation was acquired by interaction energy, NCI, QTAIM, SAPT0, EDD, NBO and FMO analyses. The outcome of interaction energy analyses clearly indicates that all the analytes are physiosorbed onto the CTF-0 surface. NCI and QTAIM analysis were employed to understand the nature of the non-covalent interactions. Furthermore, SAPT0 analysis revealed that dispersion has the highest contribution towards total SAPT0 energy. In NBO analysis, the highest charge transfer is obtained in the case of SO3@CTF-0 (-0.167 e-) whereas the lowest charge transfer is observed in CO2@CTF-0. The results of NBO charge transfer are also verified through EDD analysis. FMO analysis revealed that the highest reduction in the HOMO-LUMO energy gap is observed in the case of O3 (5.03 eV) adsorption onto the CTF-0 surface, which indicates the sensitivity of CTF-0 for O3 analytes. We strongly believe that these results might be productive for experimentalists to tailor a highly sensitive electrochemical sensor using covalent triazine-based frameworks (CTFs).

7.
RSC Adv ; 12(7): 3883-3891, 2022 Jan 28.
Article En | MEDLINE | ID: mdl-35425466

Two-dimensional (2D) monolayer nanomaterials are the thinnest possible membranes with interesting selective permeation characteristics. Among two-dimensional materials, graphenes and hexagonal boron nitride (h-BN) are the most promising membrane materials, which can even allow the separation of proton isotopes. The current work aims at understanding the higher reported permeability of h-BN by sequential doping of B and N atoms in graphene nanoflakes. The kinetic barriers were calculated with two different models of graphenes; coronene and dodecabenzocoronene via zero-point energy calculations at the transition state for proton permeability. The lower barriers for h-BN are mainly due to boron atoms. The trends of kinetic barriers are B < BN < N-doped graphenes. The permeation selectivity of graphene models increases with doping. Our studies suggest that boron-doped graphene models show an energy barrier of 0.04 eV for the permeation of proton, much lower than that of the model graphene and h-BN sheet, while nitrogen-doped graphenes have a very high energy barrier up to 7.44 eV for permeation. Therefore, boron-doped graphene models are suitable candidates for proton permeation. Moreover, the presence of carbon atoms in the periphery of BN sheets has significant negative effects on the permeation of proton isotopes, an unexplored dimension of the remote neighboring effect in 2-D materials. This study illustrates the need for permeation study through other hetero-2D surfaces, where interesting hidden chemistry is still unexplored.

8.
Biomed Res Int ; 2022: 5293349, 2022.
Article En | MEDLINE | ID: mdl-35252449

Carbonic anhydrases (CAs and EC 4.2.1.1) are the Zn2+ containing enzymes which catalyze the reversible hydration of CO2 to carbonate and proton. If they are not functioning properly, it would lead towards many diseases including tumor. Synthesis of hydrazide-sulfonamide hybrids (19-36) was carried out by the reaction of aryl (10-11) and acyl (12-13) hydrazides with substituted sulfonyl chloride (14-18). Final product formation was confirmed by FT-IR, NMR, and EI-MS. Density functional theory (DFT) calculations were performed on all the synthesized compounds to get the ground-state geometries and compute NMR properties. NMR computations were in excellent agreement with the experimental NMR data. All the synthesized hydrazide-sulfonamide hybrids were in vitro evaluated against CA II, CA IX, and CA XII isozymes for their carbonic anhydrase inhibition activities. Among the entire series, only compounds 22, 32, and 36 were highly selective inhibitors of hCA IX and did not inhibit hCA XII. To investigate the binding affinity of these compounds, molecular docking studies of compounds 32 and 36 were carried out against both hCA IX and hCA XII. By using BioSolveIT's SeeSAR software, further studies to provide visual clues to binding affinity indicate that the structural elements that are responsible for this were also studied. The binding of these compounds with hCA IX was highly favorable (as expected) and in agreement with the experimental data.


Carbonic Anhydrase II , Carbonic Anhydrases , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases/metabolism , Hydrazines/pharmacology , Molecular Docking Simulation , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Sulfonamides/pharmacology
9.
Molecules ; 27(2)2022 Jan 07.
Article En | MEDLINE | ID: mdl-35056676

In the present study, pyrazole-thiophene-based amide derivatives were synthesized by different methodologies. Here, 5-Bromothiophene carboxylic acid (2) was reacted with substituted, unsubstituted, and protected pyrazole to synthesize the amide. It was observed that unsubstituted amide (5-bromo-N-(5-methyl-1H-pyrazol-3-yl)thiophene-2-carboxamide (7) was obtained at a good yield of about 68 percent. The unsubstituted amide (7) was arylated through Pd (0)-catalyzed Suzuki-Miyaura cross-coupling, in the presence of tripotassium phosphate (K3PO4) as a base, and with 1,4-dioxane as a solvent. Moderate to good yields (66-81%) of newly synthesized derivatives were obtained. The geometry of the synthesized compounds (9a-9h) and other physical properties, like non-linear optical (NLO) properties, nuclear magnetic resonance (NMR), and other chemical reactivity descriptors, including the chemical hardness, electronic chemical potential, ionization potential, electron affinity, and electrophilicity index have also been calculated for the synthesized compounds. In this study, DFT calculations have been used to investigate the electronic structure of the synthesized compounds and to compute their NMR data. It was also observed that the computed NMR data manifested significant agreement with the experimental NMR results. Furthermore, compound (9f) exhibits a better non-linear optical response compared to all other compounds in the series. Based on frontier molecular orbital (FMO) analysis and the reactivity descriptors, compounds (9c) and (9h) were predicted to be the most chemically reactive, while (9d) was estimated to be the most stable among the examined series of compounds.

10.
ACS Omega ; 6(47): 32334-32341, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34870053

Benzanthrone dyes are organic luminophores with excellent optoelectronic properties. This computational investigation is based on density functional theory and aims to explore the photophysical behavior of some of the reported aminobenzanthrones in addition to many unreported dyes containing different electron-donating substituents. Significant changes in the dipole moment and the overall structure of the dyes upon solvation in ethanol have been observed. We find that intramolecular charge transfer is more pronounced in the solvent medium, which facilitates the emission to shift bathochromically. Intersystem crossing is predicted to be absent, which makes relaxation of the molecule to ground state more efficient by emitting in the visible region.

11.
Molecules ; 26(23)2021 Dec 02.
Article En | MEDLINE | ID: mdl-34885891

Synthesis of 5-aryl-N-(pyrazin-2-yl)thiophene-2-carboxamides (4a-4n) by a Suzuki cross-coupling reaction of 5-bromo-N-(pyrazin-2-yl)thiophene-2-carboxamide (3) with various aryl/heteroaryl boronic acids/pinacol esters was observed in this article. The intermediate compound 3 was prepared by condensation of pyrazin-2-amine (1) with 5-bromothiophene-2-carboxylic acid (2) mediated by TiCl4. The target pyrazine analogs (4a-4n) were confirmed by NMR and mass spectrometry. In DFT calculation of target molecules, several reactivity parameters like FMOs (EHOMO, ELUMO), HOMO-LUMO energy gap, electron affinity (A), ionization energy (I), electrophilicity index (ω), chemical softness (σ) and chemical hardness (η) were considered and discussed. Effect of various substituents was observed on values of the HOMO-LUMO energy gap and hyperpolarizability. The p-electronic delocalization extended over pyrazine, benzene and thiophene was examined in studying the NLO behavior. The chemical shifts of 1H NMR of all the synthesized compounds 4a-4n were calculated and compared with the experimental values.

12.
J Voice ; 2021 Oct 24.
Article En | MEDLINE | ID: mdl-34706848

OBJECTIVE: To analyze the efficacy of a modified approach to thyroplasty type one using prolene mesh implant. STUDY DESIGN: Interventional study. PLACE AND DURATION OF STUDY: Combined Military Hospital Kharian, Pakistan, in Ent department, from July 2020 to Jan 2021. METHODOLOGY: Medialization thyroplasty with prolene mesh was performed on the patients satisfying the inclusion criteria. They were analyzed objectively as well as subjectively in terms of Mean Maximum phonation time, maximum word count, and visual analog score about the quality of voice. Data analysis was done with SPSS version 20. Pre-operative and post-operative records were compared using paired sample t-test. RESULTS: A total of 39 patients underwent vocal cord medialization with prolene mesh implant. The Mean age for medialization was 41.09 + 13.37. 23 patients were females and 15 were males. 26 patients had unilateral and 13 patients had bilateral vocal dysfunction. 18 of them had vocal dysfunction due to thyroidectomy, eight had idiopathic causes and 13 had miscellaneous. The improvement in mean visual analog score was 2.87 postoperatively. Median maximum phonation time increased about five seconds postoperatively, seven seconds in males, and 4.5 seconds for females. The maximum word count increased from 11.33 preoperatively to 18.28 postoperatively. There were no major complications observed in our study. CONCLUSION: These results were comparable to many other studies for vocal cord medialization with different implant materials. But prolene mesh implant offers an easily available yet cost-effective alternative with similar benefits. LEVEL OF EVIDENCE: III (Treatment benefits: Non-randomized controlled cohort/follow-up study).

13.
Molecules ; 26(18)2021 Sep 15.
Article En | MEDLINE | ID: mdl-34577076

A series of (E)-4-bromo-N-((3-bromothiophen-2-yl)methylene)-2-methylaniline analogs synthesized in considerable yields through Suzuki cross-coupling reactions. Various electron donating and withdrawing functional moieties were successfully incorporated under the employed reaction conditions. Reaction of 4-bromo-2-methylaniline (1) with 3-bromothiophene-2-carbaldehyde (2b) in the existence of glacial acetic acid, provided (E)-4-bromo-N-((3-bromothiophen-2-yl)methylene)-2-methylaniline (3b) in excellent yield (94%). Suzuki coupling of 3b with different boronic acids in the presence of Pd(PPh3)4/K3PO4 at 90 °C led to the synthesis of the monosubstituted and bisubstituted products 5a-5d and 6a-6d in moderate yields (33-40% and 31-46%, respectively). Density functional theory (DFT) investigations were performed on different synthesized analogues 5a-5d, 6a-6d to determine their structural characteristics. The calculations provide insight into the frontier molecular orbitals (FMOs) of the imine-based analogues and their molecular electrostatic potential (MESP). Reactivity descriptors like ionization energy (I), electron affinity (A), chemical hardness (ƞ) and index of nucleophilicity have been calculated for the first time for the synthesized molecules.

14.
Phys Chem Chem Phys ; 23(14): 8557-8570, 2021 Apr 14.
Article En | MEDLINE | ID: mdl-33876018

The low concentration of graphene (<5%) in graphene/polypyrrole composites makes it quite challenging to devise a theoretical model for these composites. Thus, herein, we present theoretical calculations to determine the geometric electronic and optical properties of graphene/polypyrrole composites. Ribbon and sheet models of various sizes were considered for graphene. Oligopyrrole of various lengths was deposited in the graphene model in different orientations including π-stacking, tilted and vertical orientations. Theoretical calculations at the M062X/def2-SVP level revealed that π-stacking is the preferred orientation. To model a lower concentration of graphene, sandwich complexes of oligopyrrole were considered with graphene nanoribbons. Interaction energies revealed that sandwich complexes possessed superior additivity. The NCI analysis established that weak van der Waals interactions existed in all composites. Moreover, the HOMO-LUMO gap decreases as the concentration of graphene increases. Thus, the computed optical band gap of the C58H24-based composite is about 1.7 eV, which is consistent with the reported experimental value (2.1-1.81 eV). The computed band gap further decreases to ∼1.6 eV when the proportion of graphene increases to C64H26. Thus, our results for the graphene nanoribbon-based polypyrrole composites are in good agreement with experimental results. The UV/visible spectra revealed that as the concentration of graphene increases, a red shift is observed for all the configurations, which is consistent with experimental results.

15.
J Mol Graph Model ; 101: 107748, 2020 12.
Article En | MEDLINE | ID: mdl-32971489

Both exohedral and endohedral complexes of second row elements doped X12Y12 (X = B, Al and Y = P) nano-cages are evaluated for thermodynamic stabilities, electronic properties and kinetic barriers. Interaction energies are calculated to deeply perceive the stability of these complexes. Further, interconversion of exohedral and endohedral complexes is explored through an unprecedented approach, where 2nd row elements translate into nano-cages through boundary crossing. Subsequently, the kinetic barriers for encapsulation and decapsulation are also investigated through PES scanning of all elements by passing through hexagon of nano-cages. Systematic investigations revealed that due to larger diameter, AlP nanocage exhibits low encapsulation barriers in comparison to BP nano-cage. Such as; the encapsulation barrier of F@AlP (7.57 kcal mol-1) is lower than that of F@BP (129.78 kcal mol-1). Moreover, distortion of nano-cages due to translation of elements is also estimated by distortion energies. Large distortion energies of 113.81/118.39 kcal mol-1 are noticed for exo-B@AlP/exo-C@BP complexes. In addition, the electronic properties for all the complexes are probed and depicted that the endohedral doping have remarkable influence on the electronic properties of the nanocage in comparison to exohedral doping. NBO charge analysis shows that Be metal delivers charges of 0.08 |e|/0.03 |e| to the AlP/BP nanocage, causing the later more electron rich. Contrary to Be, all other doped atoms show negative charges.


Models, Molecular , Thermodynamics
16.
Netw Neurosci ; 4(3): 528-555, 2020.
Article En | MEDLINE | ID: mdl-32885114

Adherence determines the success and benefits of mental training (e.g., meditation) programs. It is unclear why some participants engage more actively in programs for mental training than others. Understanding neurobiological factors that predict adherence is necessary for understanding elements of learning and to inform better designs for new learning regimens. Clustering patterns in brain networks have been suggested to predict learning performance, but it is unclear whether these patterns contribute to motivational aspects of learning such as adherence. This study tests whether configurations of brain connections in resting-state fMRI scans can be used to predict adherence to two programs: meditation and creative writing. Results indicate that greater system segregation and clustering predict the number of practice sessions and class participation in both programs at a wide range of network thresholds (corrected p value < 0.05). At a local level, regions in subcortical circuitry such as striatum and accumbens predicted adherence in all subjects. Furthermore, there were also some important distinctions between groups: Adherence to meditation was predicted by connectivity within local network of the anterior insula and default mode network; and in the writing program, adherence was predicted by network neighborhood of frontal and temporal regions. Four machine learning methods were applied to test the robustness of the brain metric for classifying individual capacity for adherence and yielded reasonable accuracy. Overall, these findings underscore the fact that adherence and the ability to perform prescribed exercises is associated with organizational patterns of brain connectivity.

17.
Turk J Chem ; 44(5): 1410-1422, 2020.
Article En | MEDLINE | ID: mdl-33488240

In the current research work, a facile synthesis of a series of novel thiophene-based derivatives of 5-bromothiophene-2-carboxylic acid ( 1 ) have been synthesized. All analogs ( 5a - 5e , 10a - 10f ) were obtained from the coupling reaction of 5-bromothiophene-2-carboxylic acid ( 1 ) and different arylboronic acids with moderate-to-good yields under controlled and optimal conditions. The structures of the newly synthesized compounds were characterized through spectral analysis and their spasmolytic activity, and most of the compounds exhibited potentially good spasmolytic effect. Among the synthesized analogs, compound phenethyl 5-(3,4-dichlorophenyl)thiophene-2-carboxylate ( 10d ) particular showed an excellent spasmolytic effect with an EC 50 value of 1.26. All of the compounds were also studied for their structural and electronic properties by density functional theory (DFT) calculations. Through detailed insight into frontier molecular orbitals of the compounds and their different reactivity descriptors, it was found that the compounds 10c and 5c are the most reactive, while 10a is the most stable in the series. Furthermore, compounds 10c and 5c showed a very good NLO response with the highest ß values.

18.
RSC Adv ; 10(51): 30796-30805, 2020 Aug 17.
Article En | MEDLINE | ID: mdl-35516020

Density functional theory calculations using the PBE0-D3BJ hybrid functional have been employed to investigate the complexation of main-group metal-cations with [2.2.2]paracyclophane and deltaphane. Geometry optimization under symmetry constraints was performed to observe the mode of coordination that a metal-cation adopts when it resides inside the cyclophane cavity. Thermodynamic properties were investigated to note the trends of stability along a group of metals. To further investigate the bonding properties, Morokuma-Ziegler energy decomposition analysis, natural bond orbital analysis and Bader's analysis were employed. It was observed that most of the main-group metal complexes with cyclophanes prefer an η6η6η6 coordination mode where the metal-cation sits in the centre of the cyclophane cavity. There is an increased thermodynamic stability in [2.2.2]paracyclophane complexes compared to their deltaphane analogues while the reverse is true regarding the strength of coordination based on interaction energy.

19.
RSC Adv ; 10(53): 31997-32010, 2020 Aug 26.
Article En | MEDLINE | ID: mdl-35518175

Explosives are quite toxic and destructive; therefore, it is necessary to not only detect them but also remove them. The adsorption behavior of NX3 analytes (NCl3, NBr3 and NI3) over the microporous C2N surface was evaluated by DFT calculations. The nature of interactions between NX3 and C2N was characterized by adsorption energy, NCI, QTAIM, SAPT0, NBO, EDD and FMO analysis. The interaction energies of NX3 with C2N are in the range of -10.85 to -16.31 kcal mol-1 and follow the order of NCl3@C2N > NBr3@C2N > NI3@C2N, respectively. The 3D isosurfaces and 2D-RGD graph of NCI analysis qualitatively confirmed the existence of halogen bonding interactions among the studied systems. Halogen bonding was quantified by SAPT0 component energy analysis. The SAPT0 results revealed that ΔE disp (56.75%) is the dominant contributor towards interaction energy, whereas contributions from ΔE elst and ΔE ind are 29.41% and 14.34%, respectively. The QTAIM analysis also confirmed the presence of halogen bonding between atoms of NX3 and C2N surface. EDD analysis also validated NCI, QTAIM and NBO analysis. FMO analysis revealed that the adsorption of NI3 on the C2N surface caused the highest change in the E HOMO-LUMO gap (from 5.71 to 4.15 eV), and resulted in high sensitivity and selectivity of the C2N surface towards NI3, as compared to other analytes. It is worth mentioning that in all complexes, a significant difference in the E HOMO-LUMO gap was seen when electronic transitions occurred from the analyte to the C2N surface.

20.
Curr Protein Pept Sci ; 19(3): 292-301, 2018.
Article En | MEDLINE | ID: mdl-28059042

Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review.


Alkaloids/chemistry , Alkaloids/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Neoplasms/drug therapy , Alkaloids/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/therapeutic use , Drug Discovery , Humans , Neoplasms/enzymology
...