Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(18): 7432-7440, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069429

RESUMEN

It has been long known that low molecular weight resists can achieve a very high resolution, theoretically close to the probe diameter of the electron beam lithography (EBL) system. Despite technological improvements in EBL systems, the advances in resists have lagged behind. Here we demonstrate that a low-molecular-mass single-source precursor resist (based on cadmium(II) ethylxanthate complexed with pyridine) is capable of a achieving resolution (4 nm) that closely matches the measured probe diameter (∼3.8 nm). Energetic electrons enable the top-down radiolysis of the resist, while they provide the energy to construct the functional material from the bottom-up─unit cell by unit cell. Since this occurs only within the volume of resist exposed to primary electrons, the minimum size of the patterned features is close to the beam diameter. We speculate that angstrom-scale patterning of functional materials is possible with single-source precursor resists using an aberration-corrected electron beam writer with a spot size of ∼1 Å.

2.
Science ; 363(6428): 719-723, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765562

RESUMEN

Overcoming the trade-offs among power consumption, fabrication cost, and signal amplification has been a long-standing issue for wearable electronics. We report a high-gain, fully inkjet-printed Schottky barrier organic thin-film transistor amplifier circuit. The transistor signal amplification efficiency is 38.2 siemens per ampere, which is near the theoretical thermionic limit, with an ultralow power consumption of <1 nanowatt. The use of a Schottky barrier for the source gave the transistor geometry-independent electrical characteristics and accommodated the large dimensional variation in inkjet-printed features. These transistors exhibited good reliability with negligible threshold-voltage shift. We demonstrated this capability with an ultralow-power high-gain amplifier for the detection of electrophysiological signals and showed a signal-to-noise ratio of >60 decibels and noise voltage of <0.3 microvolt per hertz1/2 at 100 hertz.

3.
ACS Appl Mater Interfaces ; 10(13): 10618-10621, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29557636

RESUMEN

A positive shift in the Dirac point in graphene field-effect transistors was observed with Hall-effect measurements coupled with Kelvin-probe measurements at room temperature. This shift can be explained by the asymmetrical behavior of the contact resistance by virtue of the electron injection barrier at the source contact. As an outcome, an intrinsic resistance is given to allow a retrieval of an intrinsic carrier mobility found to be decreased with increasing gate bias, suggesting the dominance of short-range scattering in a single-layer graphene field-effect transistor. These results analytically correlate the field-effect parameters with intrinsic graphene properties.

4.
Nano Lett ; 10(4): 1302-7, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20199061

RESUMEN

In this paper, we demonstrate a double nanoimprinting process that allows the formation of nanostructured polymer heterojunctions of composition and morphology that can be selected independently. We fabricated photovoltaic (PV) devices with extremely high densities (10(14)/mm(2)) of interpenetrating nanoscale columnar features in the active polymer blend layer. The smallest feature sizes are as small as 25 nm on a 50 nm pitch, which results in a spacing of heterojunctions at or below the exciton diffusion length. Photovoltaic devices based on double-imprinted poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (F8TBT)/ poly(3-hexylthiophene) (P3HT) films are among the best polymer-polymer blend devices reported to date with a power conversion efficiency (PCE, eta(e)) of 1.9%.


Asunto(s)
Benzotiazoles/química , Suministros de Energía Eléctrica , Nanoestructuras/química , Nanotecnología/métodos , Polímeros/química , Tiofenos/química , Electroquímica , Nanotecnología/instrumentación , Tamaño de la Partícula , Fotoquímica , Propiedades de Superficie
5.
Nat Nanotechnol ; 3(1): 26-30, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18654446

RESUMEN

The demand for increased information storage densities has pushed silicon technology to its limits and led to a focus on research on novel materials and device structures, such as magnetoresistive random access memory and carbon nanotube field-effect transistors, for ultra-large-scale integrated memory. Electromechanical devices are suitable for memory applications because of their excellent 'ON-OFF' ratios and fast switching characteristics, but they involve larger cells and more complex fabrication processes than silicon-based arrangements. Nanoelectromechanical devices based on carbon nanotubes have been reported previously, but it is still not possible to control the number and spatial location of nanotubes over large areas with the precision needed for the production of integrated circuits. Here we report a novel nanoelectromechanical switched capacitor structure based on vertically aligned multiwalled carbon nanotubes in which the mechanical movement of a nanotube relative to a carbon nanotube based capacitor defines 'ON' and 'OFF' states. The carbon nanotubes are grown with controlled dimensions at pre-defined locations on a silicon substrate in a process that could be made compatible with existing silicon technology, and the vertical orientation allows for a significant decrease in cell area over conventional devices. We have written data to the structure and it should be possible to read data with standard dynamic random access memory sensing circuitry. Simulations suggest that the use of high-k dielectrics in the capacitors will increase the capacitance to the levels needed for dynamic random access memory applications.


Asunto(s)
Almacenamiento y Recuperación de la Información , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Procesamiento de Señales Asistido por Computador/instrumentación , Capacidad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Mecánica , Nanotubos de Carbono/ultraestructura
6.
ACS Nano ; 2(12): 2526-30, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19206288

RESUMEN

We have fabricated single-walled carbon nanotube (SWNT) field effect transistors (FETs) with molybdenum source and drain contacts. Normally, these devices operate only as p-channel transistors, however, after polystyrene latex nanospheres were attached to the nanotubes close to the contacts, they changed to ambipolar operation. This strategy provides a simple method to modify the electrical behavior of unipolar SWNT-FETs by influencing the gate-channel electric field distribution and offset charge, so enabling complementary circuits to be fabricated.


Asunto(s)
Nanosferas/química , Nanotubos de Carbono/química , Poliestirenos/química , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...