Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Calcium ; 94: 102358, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33517250

RESUMEN

Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Calcio/metabolismo , Cognición/fisiología , Red Nerviosa/fisiología , Animales , Ratones , Sinapsis/fisiología
2.
EBioMedicine ; 39: 422-435, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30555043

RESUMEN

BACKGROUND: Progression of Alzheimer's disease is thought initially to depend on rising amyloidß and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidß, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. METHODS: CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. FINDINGS: The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. INTERPRETATION: The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidß levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. FUNDING: GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Cognición/fisiología , Hipocampo/fisiología , Microglía/fisiología , Presenilina-1/genética , Animales , Conducta Animal , Modelos Animales de Enfermedad , Hemicigoto , Hipocampo/metabolismo , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Microglía/metabolismo , Transmisión Sináptica
3.
Biomed Opt Express ; 9(5): 2154-2167, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29760977

RESUMEN

Light sheet fluorescence microscopy offers considerable potential to the cellular neuroscience community as it makes it possible to image extensive areas of neuronal structures, such as axons or dendrites, with a low light budget, thereby minimizing phototoxicity. However, the shallow depth of a light sheet, which is critical for achieving high contrast, well resolved images, adds a significant challenge if fast functional imaging is also required, as multiple images need to be collected across several image planes. Consequently, fast functional imaging of neurons is typically restricted to a small tissue volume where part of the neuronal structure lies within the plane of a single image. Here we describe a method by which fast functional imaging can be achieved across a much larger tissue volume; a custom-built light sheet microscope is presented that includes a synchronized galvo mirror and electrically tunable lens, enabling high speed acquisition of images across a configurable depth. We assess the utility of this technique by acquiring fast functional Ca2+ imaging data across a neuron's dendritic arbour in mammalian brain tissue.

4.
Sci Rep ; 6: 26317, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27215692

RESUMEN

Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca(2+) signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community.


Asunto(s)
Sistema Nervioso Central/anatomía & histología , Microscopía Fluorescente/instrumentación , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Señalización del Calcio , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Diseño de Equipo , Colorantes Fluorescentes , Rayos Láser , Masculino , Fotólisis , Ratas , Ratas Wistar
5.
Neural Plast ; 2016: 6170509, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881123

RESUMEN

The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca(2+) influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes.


Asunto(s)
Espinas Dendríticas/fisiología , Hipocampo/citología , Hipocampo/fisiología , Homeostasis , Potenciación a Largo Plazo , Células Piramidales/citología , Células Piramidales/fisiología , Animales , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Células Piramidales/efectos de los fármacos , Tetraetilamonio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...