Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Turk J Chem ; 47(2): 399-408, 2023.
Article En | MEDLINE | ID: mdl-37528934

Nanostructured semiconductor materials are considered potential candidates for the degradation of textile wastewater via the photocatalytic process. This study aims to produce hexagonal gallium nitride (GaN) nanoplates and zinc oxide (ZnO) nanoparticles in a deionized water environment utilizing a one-step arc discharge process. Detailed characterization of samples has been completed via scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV visible spectroscopy methods. The hybrid nanostructure morphologies consist of nanoplates and nanorods of different sizes. The photoperformance of GaN/ZnO hybrid nanostructures was assessed via the malachite green (MG) dye degradation under UV exposure. Under UV exposure, the degradation yield reached 98% in 60 min. Compared to individual ZnO and GaN nanoparticles, the photocatalytic reaction rate of the GaN/ZnO photocatalyst is 2.2 and 3.6 times faster, respectively. Besides, the GaN/ZnO hybrid nanostructures show excellent photocatalytic stability. The energy consumption of the photocatalytic degradation in the presence of GaN/ZnO hybrid nanostructures was 1.688 kWhL-1. These results demonstrate that the GaN/ZnO hybrid nanostructures with improved photocatalytic activity are a reasonable option for the decomposition of textile wastewater under UV light exposure.

2.
Int J Phytoremediation ; 25(10): 1306-1317, 2023.
Article En | MEDLINE | ID: mdl-36437748

Remediation of organic dyes from wastewater in textile industries is a big challenge to decreasing water pollution. This study was aimed at the preparation of ZnO nanoparticles (NPs) and their application as a photocatalyst for the degradation of methylene blue (MB), sunfix red (SR) and real textile wastewater (RTW) under both UV and visible irradiations. The ZnO NPs were synthesized with a green Thymus vulgaris leaf extract-supported approach following the calcination process. 50 mg L-1 MB and 50 mg L-1 SR dyes were completely photodegrade under UV irradiation after only 20 and 45 minutes, respectively, in the presence of 1.0 mg/mL ZnO NPs. When they are exposed to visible light, the degradation efficiency reached 91 and 75% within 60 and 120 min, respectively. Photocatalytic measurements of RTW depict that 95% (within 60 min under UV illumination) and 79% (within 90 min under visible illumination) were degraded, respectively. The enhanced photodegradation can be attributed to the narrowing of the bandgap of the ZnO NPs, high crystallinity and nearly hexagonal morphology with an average size of 20-30 nm. The present results show that ZnO NPs could potentially be applied for high-efficiency degradation of organic dyes and RTW under both UV and visible light irradiation.


We report for the first time, Thymus vulgaris leaf extract­assisted synthesis of ZnO nanoparticles (NPs) has been applied as a photocatalytic dye and RTW degradation. Second, our synthesis approach is more facile and simple than the previous method where complex hydrothermal or solvothermal methods have been applied, which leads to a complex preparation procedure. We systematically prepared ZnO materials in taking account into the variable Thymus vulgaris/ZnO precursor ratio, different calcination temperature and time and in detail, their photocatalytic activity has been fully investigated.


Zinc Oxide , Wastewater , Catalysis , Biodegradation, Environmental , Coloring Agents , Methylene Blue , Textiles
3.
Turk J Chem ; 46(4): 1128-1136, 2022.
Article En | MEDLINE | ID: mdl-37538775

The synthesis of fluorescent carbon quantum dots (CQDs) and their applications have attracted great attention due to their excellent properties. Especially, the unique visible-light absorption and photo-induced electron transfer properties make CQDs available in photocatalytic degradation of organic dye pollutants in water resources. Herein, we synthesized nondoped CQDs and boron-doped CQDs (B-CQDs) by hydrothermal method and compared their photocatalytic degradation activity of methylene blue (MB) and methyl red (MR) dyes under visible light irradiation. The characterization outcomes showed that the optical and structural properties can be easily improved by doping with hetero-atom, thereby photocatalytic performance. As expected, the photodegradation performance of both organic dyes in model solutions by B-CQDs was higher than that of CQDs. MB and MR dyes were photodegraded over 95% by B-CQDs in 90 and 120 min visible light irradiation, respectively. Eventually, the results revealed that nondoped CQDs and B-CQDs are excellent candidates for the degradation of organic dyes because of their high photocatalytic performance under visible light illumination.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120175, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34304013

A series of disazobenzo[c]cinnoline dyes was prepared by coupling reaction of 3,8-dihydroxybenzo[c]cinnoline with diazotised aromatic amines. The structures of these dyes were confirmed using UV-Vis, FTIR, 1H NMR, LC-MS/MS and LC-MS/TOF spectroscopic techniques. 13C NMR, 13C-DEPT, 1H-1H COSY, 1H-13C HMQC and 1H-13C HMBC spectra of dye 12 were demonstrated in this study. In addition, the effects of the substituent attached to the phenyl ring, solvent and acid-base on the UV-Vis spectra of the dyes were investigated. Besides, voltammetric and spectroelectrochemical behaviours of four disazobenzo[c]cinnolines (2, 8, 11 and 13) in acetonitrile (ACN) solution were also evaluated. It was observed that the disazobenzo[c]cinnoline derivatives indicated reversible voltammetric behaviour in acetonitrile-tetrabutylammonium perchlorate (ACN-TBAP) solution. A square-wave potential step method coupled with optical spectroscopy was used to probe switching times and optic contrast of the dyes.


Azo Compounds , Tandem Mass Spectrometry , Chromatography, Liquid , Electronics , Heterocyclic Compounds, 2-Ring , Spectrophotometry, Ultraviolet
5.
Environ Sci Pollut Res Int ; 28(6): 6700-6718, 2021 Feb.
Article En | MEDLINE | ID: mdl-33006103

The textile processing industry utilizes enormous amounts of water. After the dying process, the wastewater discharged to the environment contains carcinogens, non-biodegradable, toxic, and colored organic materials. This study aimed to develop a nanocomposite material with improved photocatalytic activity to degrade textile dyes and without a need for a post-separation process after the use. For this, nickel oxide nanoparticles (NiO NPs) were synthesized by a simple method in aqueous media. Then, NiO-doped polyaniline (PANI/NiO) with efficient absorption in the visible region (optical band gap of 2.08 eV) synthesized on a stainless steel substrate with electropolymerization of aniline in the aqueous media. The photocatalytic activity of PANI/NiO film was also investigated by the degradation of model dyes. Under UV and visible light irradiation, the PANI/NiO film degraded methylene blue and rhodamine B dyes entirely in 30 min. Moreover, the PANI/NiO film was also utilized to degrade real textile wastewater (RTW) without applying any pre-process; it was entirely decomposed by the nanocomposite film in only 45 min under UV light irradiation. The photocatalytic reaction rate of the pure PANI film is increased as 2.5 and 1.5 times with the addition of NiO NPs under UV and visible light irradiations for degradation RTW, respectively. The photocatalytic efficiency was attributed to reduced electron-hole pair recombination on the photocatalyst surface. Furthermore, the photocatalytic stability is discussed based on re-use experiments. The photocatalytic performance remains nearly unchanged, and the degradation of dyes is kept 94% after five cycles.


Coloring Agents , Nanocomposites , Aniline Compounds , Catalysis , Light , Textiles , Ultraviolet Rays , Wastewater
...