Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174331, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945247

RESUMEN

Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.

2.
Environ Int ; 186: 108610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626495

RESUMEN

Greater Cairo, the largest megacity of the Middle East North Africa (MENA) region, is currently suffering from major aerosol pollution, posing a significant threat to public health. However, the main sources of pollution remain insufficiently characterized due to limited atmospheric observations. To bridge this knowledge gap, we conducted a continuous 2-month field study during the winter of 2019-2020 at an urban background site, documenting for the first time the chemical and physical properties of submicron (PM1) aerosols. Crustal material from both desert dust and road traffic dust resuspension contributed as much as 24 % of the total PM1 mass (rising to 66 % during desert dust events), a figure not commonly observed in urban environments. Our observations showed significant decreases in black carbon concentrations and ammonium sulfate compared to data from 15 years ago, indicating an important reduction in both local and regional emissions as a result of effective mitigation measures. The diurnal variability of carbonaceous aerosols was attributed to emissions emanating from local traffic at rush hours and nighttime open biomass burning. Surprisingly, semi-volatile ammonium chloride (NH4Cl) originating from local open biomass and waste burning was found to be the main chemical species in PM1 over Cairo. Its nighttime formation contributed to aerosol water uptake during morning hours, thereby playing a major role in the build-up of urban haze. While our results confirm the persistence of a significant dust reservoir over Cairo, they also unveil an additional source of highly hygroscopic (semi-volatile) inorganic salts, leading to a unique type of urban haze. This haze, with dominant contributors present in both submicron (primarily as NH4Cl) and supermicron (largely as dust) modes, underscores the potential implications of heterogeneous chemical transformation of air pollutants in urban environments.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Egipto , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Ciudades , Polvo/análisis , Tamaño de la Partícula
3.
Atmos Pollut Res ; 13(11): 101587, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36340245

RESUMEN

To prevent the rapid spreading of the COVID-19 pandemic, the Egyptian government had imposed partial lockdown restrictions which led emissions reduction. This served as ideal conditions for a natural experiment, for study the effect of partial lockdown on the atmospheric aerosol chemistry and the enhanced secondary inorganic aerosol production in a semi-desert climate area like Egypt. To achieve this objective, SO2, NO2, and PM2.5 and their chemical compositions were measured during the pre-COVID, COVID partial lockdown, and post-COVID periods in 2020 in a suburb of Greater Cairo, Egypt. Our results show that the SO2, NO2, PM2.5 and anthropogenic elements concentrations follow the pattern pre-COVID > post-COVID > COVID partial lockdown. SO2 and NO2 reductions were high compared with their secondary products during the COVID partial lockdown compared with pre-COVID. Although, PM2.5, anthropogenic elements, NO2, SO2, SO4 2-, NO3 -, and NH4 + decreased by 39%, 38-55%, 38%, 32.9%. 9%, 14%, and 4.3%, respectively, during the COVID partial lockdown compared with pre-COVID, with the secondary inorganic ions (SO4 2-, NO3 -, and NH4 +) being the dominant components in PM2.5 during the COVID partial lockdown. Moreover, the enhancement of NO3 - and SO4 2- formation during the COVID partial lockdown was high compared with pre-COVID. SO4 2- and NO3 - formation enhancements were significantly positive correlated with PM2.5 concentration. Chemical forms of SO4 2- and NO3 - were identified in PM2.5 based on their NH4 +/SO4 2- molar ratio and correlation between NH4 + and both NO3 - and SO4 2-. The particles during the COVID partial lockdown were more acidic than those in pre-COVID.

4.
Sci Total Environ ; 781: 146540, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33794462

RESUMEN

Sporting walkways (SW) are a new innovation which may prove popular in many cities. As there is currently no information on possible health risks associated with their use, concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with deposited dust sampled on SW in Jeddah, Saudi Arabia, have been measured and interpreted in relation to sources and cancer risk. The average ∑PAHs (16 compounds) ranged between 1357 ng/g in residential areas and 3764 ng/g in central urban areas, with suburban areas between. The congener profile and diagnostic ratios of PAHs indicate a predominant source associated with petroleum combustion (pyrogenic source), most probably vehicular emissions. Carcinogenic potential is estimated from the sum of carcinogenic compound concentrations weighted by their individual potency relative to benzo(a)pyrene, and is found to be similar to household dust sampled in the same city, and lower than many other indoor and outdoor (road) dusts sampled across the world.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Ciudades , Polvo/análisis , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Arabia Saudita
5.
Environ Pollut ; 269: 116229, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33321310

RESUMEN

In the present study, the daily dose in terms of particle surface area received by citizens living in different low- and middle-income countries, characterized by different lifestyles, habits, and climates, was evaluated. The level of exposure to submicron particles and the dose received by the populations of Accra (Ghana), Cairo (Egypt), Florianopolis (Brazil), and Nur-Sultan (Kazakhstan) were analyzed. A direct exposure assessment approach was adopted to measure the submicron particle concentration levels of volunteers at a personal scale during their daily activities. Non-smoking adult volunteers performing non-industrial jobs were considered. Exposure data were combined with time-activity pattern data (characteristic of each population) and the inhalation rates to estimate the daily dose in terms of particle surface area. The received dose of the populations under investigation varied from 450 mm2 (Florianopolis, Brazil) to 1300 mm2 (Cairo, Egypt). This work highlights the different contributions of the microenvironments to the daily dose with respect to high-income western populations. It was evident that the contribution of the Cooking & Eating microenvironment to the total exposure (which was previously proven to be one of the main exposure routes for western populations) was only 8%-14% for low- and middle-income populations. In contrast, significant contributions were estimated for Outdoor day and Transport microenvironments (up to 20% for Cairo, Egypt) and the Sleeping & Resting microenvironment (up to 28% for Accra, Ghana), highlighting the effects of different site-specific lifestyles (e.g. time-activity patterns), habits, socioeconomic conditions, climates, and outdoor air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Brasil , Países en Desarrollo , Egipto , Monitoreo del Ambiente , Ghana , Humanos , Kazajstán , Tamaño de la Partícula , Material Particulado/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-32316605

RESUMEN

Data concerning polycyclic aromatic hydrocarbons (PAHs) in Jeddah's schools, Saudi Arabia, and their implications for health risks to children, is scarce. Classroom air conditioner filter dusts were collected from primary schools in urban, suburban and residential areas of Jeddah. This study aimed to assess the characteristics of classroom-dust-bound PAHs and the health risks to children of PAH exposure. Average PAH concentrations were higher in urban schools than suburban and residential schools. Benzo (b)fluoranthene (BbF), benzo(ghi)perylene (BGP), chrysene (CRY) and Dibenz[a,h]anthracene (DBA) at urban and suburban schools and BbF, BGP, fluoranthene (FLT) and indeno (1, 2, 3, -cd)pyrene (IND) at residential schools were the dominant compounds in classroom dust. PAHs with five aromatic rings were the most abundant at all schools. The relative contribution of the individual PAH compounds to total PAH concentrations in the classroom dusts of schools indicate that the study areas do share a common source, vehicle emissions. Based on diagnostic ratios of PAHs, they are emitted from local pyrogenic sources, and traffic is the significant PAH source, with more significant contributions from gasoline-fueled than from diesel cars. Based on benzo[a]pyrene equivalent (BaPequi) calculations, total carcinogenic activity (TCA) for total PAHs represent 21.59% (urban schools), 20.99% (suburban schools), and 18.88% (residential schools) of total PAH concentrations. DBA and BaP were the most dominant compounds contributing to the TCA, suggesting the importance of BaP and DBA as surrogate compounds for PAHs in this schools. Based on incremental lifetime cancer risk (ILCingestion, ILCRinhalation, ILCRdermal) and total lifetime cancer risk (TLCR)) calculations, the order of cancer risk was: urban schools > suburban schools > residential schools. Both ingestion and dermal contact are major contributors to cancer risk. Among PAHs, DBA, BaP, BbF, benzo(a)anthracene (BaA), benzo(k)fluoranthene (BkF), and IND have the highest ILCR values at all schools. LCR and TLCR values at all schools were lower than 10-6, indicating virtual safety. DBA, BaP and BbF were the predominant contributors to cancer effects in all schools.


Asunto(s)
Contaminantes Atmosféricos , Polvo/análisis , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Instituciones Académicas , Contaminantes Atmosféricos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Arabia Saudita
7.
Arch Environ Contam Toxicol ; 78(1): 68-78, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760439

RESUMEN

Very little is known about the elemental composition and possible sources of fine aerosol particles from Mediterranean megacities. Fine aerosol particles were collected at a residential-industrial area in Greater Cairo, Egypt, during the period from October 2010 to May 2011. The elemental compositions of the collected samples were quantified by using a homemade energy dispersive x-ray fluorescence spectrometer, whereas black carbon was quantified by a black smoke detector. Fifteen elements have been quantified. Of these constituents, Ca, C, Cl, S, and Fe had the highest concentrations: greater than 1 µg m-3. The overall mean mass concentration of the collected samples equals 70 µg m-3; this value exceeds the European Union annual Air Quality Standard levels. The individual elemental concentrations of the fine particles were found to be dominated by elements linked to mineral dust. Most of the monthly variations of elemental concentrations can be attributed to seasonal meteorological conditions. Other possible sources were vehicle-exhaust and industrial activities. The results pinpoint the problem of identifying different sources when one source, in this case, the nearby deserts, is dominant. The results from this study contribute to the growing knowledge of concentrations, composition, and possible sources of ambient fine particulate matter.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Aerosoles , Egipto , Industrias , Región Mediterránea , Tamaño de la Partícula , Estaciones del Año
8.
Artículo en Inglés | MEDLINE | ID: mdl-31835482

RESUMEN

Classrooms Air Conditioner Filter (CACF) particles represent all of the exposed particles that have migrated to the interior environment. This study was conducted to assess the heavy metals contamination in CACF particles from Jeddah primary schools located in urban, suburban and residential areas; and to evaluate their health risks of children exposure (non-carcinogenic and carcinogenic). Heavy metals levels in CACF particles of schools were in the following order: urban schools > suburban schools > residential schools. Fe, Mn and Zn were the dominant species. Geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) values indicated that the contamination levels was in the following order Cd > Pb > Zn > As > Cu > Ni > Mn > Cr > Co >V > Fe. School CACF particles was moderately contaminated with As and Zn and moderately to heavily contaminated with Pb and Cd. Enrichment factors (EFs) indicated that Zn, Cd, Pb, As and Cu in CACF particles were severe enriched. The hazard quotient (HQs) and hazards index (HI) values for heavy metals were lower than the acceptable level of one. As, Pb, Cr and Mn were exhibited high non-cancer effects for children. The lifetime cancer risk (LCR) and total lifetime cancer risk (TLCR), HQs and HI values for the different exposure pathways of heavy metals decreased in the following order: ingestion > dermal contact > inhalation. Carcinogenic and non-carcinogenic risk rank order of schools were urban schools > suburban schools > residential schools. The LCR and TLCR of heavy metals was in the following order: Co > Ni >Cr > Cd > As > Pb. The ingestion lifetime cancer risk (LCRing) and TLCR values from exposure to Ni and Cr in urban and suburban schools, Cd in urban schools, and Co in all Jeddah schools only exceed the acceptable range (1 × 10-6-1 × 10-4) Only LCRing and TLCR values from exposure to ∑ carcinogens exceed the acceptable level.


Asunto(s)
Contaminantes Atmosféricos/análisis , Arsénico/análisis , Carcinógenos/análisis , Metales Pesados/análisis , Aire Acondicionado/instrumentación , Niño , Monitoreo del Ambiente , Filtración/instrumentación , Humanos , Medición de Riesgo , Arabia Saudita , Instituciones Académicas
9.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600872

RESUMEN

Greater Cairo (Egypt) is a megalopolis where the studies of the air pollution events are of extremely high relevance, for the geographical-climatological aspects, the anthropogenic emissions and the health impact. While preliminary studies on the particulate matter (PM) chemical composition in Greater Cairo have been performed, no data are yet available on the PM's toxicity. In this work, the in vitro toxicity of the fine PM (PM2.5) sampled in an urban area of Greater Cairo during 2017-2018 was studied. The PM2.5 samples collected during spring, summer, autumn and winter were preliminary characterized to determine the concentrations of ionic species, elements and organic PM (Polycyclic Aromatic Hydrocarbons, PAHs). After particle extraction from filters, the cytotoxic and pro-inflammatory effects were evaluated in human lung A549 cells. The results showed that particles collected during the colder seasons mainly induced the xenobiotic metabolizing system and the consequent antioxidant and pro-inflammatory cytokine release responses. Biological events positively correlated to PAHs and metals representative of a combustion-derived pollution. PM2.5 from the warmer seasons displayed a direct effect on cell cycle progression, suggesting possible genotoxic effects. In conclusion, a correlation between the biological effects and PM2.5 physico-chemical properties in the area of study might be useful for planning future strategies aiming to improve air quality and lower health hazards.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Biomarcadores , Ciclo Celular , Supervivencia Celular , Clima , Egipto , Humanos , Mediadores de Inflamación , Estrés Oxidativo , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-29278373

RESUMEN

Data dealing with the assessment of heavy metal pollution in road dusts in Jeddah, Saudi Arabia and its implication to human health risk of human exposure to heavy metals, are scarce. Road dusts were collected from five different functional areas (traffic areas (TA), parking areas (PA), residential areas (RA), mixed residential commercial areas (MCRA) and suburban areas (SA)) in Jeddah and one in a rural area (RUA) in Hada Al Sham. We aimed to measure the pollution levels of heavy metals and estimate their health risk of human exposure applying risk assessment models described by United States Environmental Protection Agency (USEPA). Using geo-accumulation index (Igeo), the pollution level of heavy metals in urban road dusts was in the following order Cd > As > Pb > Zn > Cu > Ni > Cr > V > Mn > Co > Fe. Urban road dust was found to be moderately to heavily contaminated with As, Pb and Zn, and heavily to extremely contaminated with Cd. Calculation of enrichment factor (EF) revealed that heavy metals in TA had the highest values compared to that of the other functional areas. Cd, As, Pb, Zn and Cu were severely enriched, while Mn, V, Co, Ni and Cr were moderately enriched. Fe was considered as a natural element and consequently excluded. The concentrations of heavy metals in road dusts of functional areas were in the following order: TA > PA > MCRA > SA > RA > RUA. The study revealed that both children and adults in all studied areas having health quotient (HQ) < 1 are at negligible non-carcinogenic risk. The only exception was for children exposed to As in TA. They had an ingestion health quotient (HQing) 1.18 and a health index (HI) 1.19. The most prominent exposure route was ingestion. The cancer risk for children and adults from exposure to Pb, Cd, Co, Ni, and Cr was found to be negligible (≤1 × 10-6).


Asunto(s)
Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Metales Pesados/efectos adversos , Metales Pesados/análisis , Adulto , Algoritmos , Niño , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Humanos , Arabia Saudita , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...