Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 360(6393): 1093-1096, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29880682

RESUMEN

Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

3.
Life Sci Space Res (Amst) ; 14: 12-17, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28887938

RESUMEN

The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.


Asunto(s)
Radiación Cósmica , Marte , Neutrones , Exposición Profesional/análisis , Monitoreo de Radiación/métodos , Astronautas , Humanos , Protección Radiológica , Medición de Riesgo , Factores de Tiempo
4.
Life Sci Space Res (Amst) ; 14: 18-28, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28887939

RESUMEN

The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.


Asunto(s)
Radiación Cósmica , Medio Ambiente Extraterrestre , Marte , Modelos Teóricos , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Astronautas , Rayos gamma , Humanos , Neutrones , Protección Radiológica
5.
Life Sci Space Res (Amst) ; 14: 3-11, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28887941

RESUMEN

The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on ground analysis tools effect and improve the flux calculations. An in-depth comparison of modeling results from the workshop and RAD fluxes of this publication is presented elsewhere in this issue (Matthiä et al., 2017).


Asunto(s)
Radiación Cósmica , Exposición a Riesgos Ambientales/análisis , Medio Ambiente Extraterrestre , Marte , Modelos Teóricos , Monitoreo de Radiación/métodos , Humanos , Factores de Tiempo
6.
Life Sci Space Res (Amst) ; 10: 29-37, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27662785

RESUMEN

The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.


Asunto(s)
Radiación Cósmica , Exposición a Riesgos Ambientales/análisis , Marte , Exposición Profesional/análisis , Monitoreo de Radiación , Nave Espacial , Astronautas , Humanos , Medición de Riesgo
7.
Radiat Prot Dosimetry ; 166(1-4): 290-4, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25969529

RESUMEN

In this study, results are presented from the on-board radiation assessment detector (RAD) of Mars Science Laboratory (MSL). RAD is designed to measure the energetic particle radiation environment, which consists of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) as well as secondary particles created by nuclear interactions of primary particles in the shielding (during cruise) or Martian soil and atmosphere (surface measurements). During the cruise, RAD collected data on space radiation from inside the craft, thus allowing for a reasonable estimation of what a human crew travelling to/from Mars might be exposed to. On the surface of Mars, RAD is shielded by the atmosphere (from above) and the planet itself (from below). RAD measures the first detailed radiation data from the surface of another planet, and they are highly relevant for planning future crewed missions. The results for radiation dose and dose equivalent (a quantity most directly related to human health risk) are presented during the cruise phase, as well as on the Martian surface. Dose and dose equivalent are dominated by the continuous GCR radiation, but several SEP events were also detected and are discussed here.


Asunto(s)
Radiación Cósmica , Medio Ambiente Extraterrestre , Marte , Modelos Teóricos , Exposición Profesional/prevención & control , Actividad Solar , Vuelo Espacial , Astronautas , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Protección Radiológica , Medición de Riesgo
8.
Science ; 343(6169): 1244797, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324275

RESUMEN

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.


Asunto(s)
Radiación Cósmica , Exobiología , Medio Ambiente Extraterrestre , Marte , Deinococcus/fisiología , Deinococcus/efectos de la radiación , Humanos , Compuestos Orgánicos/análisis , Dosis de Radiación , Vuelo Espacial , Propiedades de Superficie/efectos de la radiación
9.
Radiat Environ Biophys ; 46(2): 101-6, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17342547

RESUMEN

The atmosphere of Mars significantly attenuates the heavy ion component of the primary galactic cosmic rays (GCR), however, increases the fluence of secondary light ions (neutrons, and hydrogen and helium isotopes) because of particle production processes. We describe results of the quantum multiple scattering fragmentation (QMSFRG) model for the production of light nuclei through the distinct mechanisms of nuclear abrasion and ablation, coalescence, and cluster knockout. The QMSFRG model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. We use the QMSFRG model and the space radiation transport code, HZETRN to make predictions of the light particle environment on the Martian surface at solar minimum and near maximum. The radiation assessment detector (RAD) experiment will be launched in 2009 as part of the Mars Science Laboratory (MSL). We make predictions of the expected results for time dependent count-rates to be observed by the RAD experiment. Finally, we consider sensitivity assessments of the impact of the Martian atmospheric composition on particle fluxes at the surface.


Asunto(s)
Radiación Cósmica , Exposición a Riesgos Ambientales/análisis , Medio Ambiente Extraterrestre , Marte , Modelos Teóricos , Monitoreo de Radiación/métodos , Vuelo Espacial/métodos , Simulación por Computador , Iones , Dosis de Radiación , Medición de Riesgo/métodos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...