Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 903: 166592, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640072

RESUMEN

Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s-1 to an unprecedented 278 s-1, and averages at 93 ± 66 s-1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.

2.
Environ Monit Assess ; 128(1-3): 447-64, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17057982

RESUMEN

In the present study, we investigate the variation of NOx)(NO + NO2) and O3 concentrations and the relation between the extreme events (episodes) of NOx and O3 concentrations and the relevant meteorological conditions in the urban atmosphere of the Athens basin. Hourly data of NO, NO2 and O3 concentrations from 10 representative monitoring sites located in the Athens basin were used, covering the 10-year time period from 1994 to 2003. The results of our analysis show that the concentrations of air pollutants differ significantly from one monitoring site to another, due to the location and proximity of each station to the emission sources. For each site, there are also significant differences in NOx and O3 concentrations from day to day, as well as from month to month and/or from season to season. The annual and seasonal variations show higher NO values in winter and lower in summer. On the contrary, NO2 and O3 values are higher in summer (photochemical production of O3) and lower in winter. These differences are attributed, to a large extent, to the prevailing synoptic and meteorological conditions, the most important between them being the wind direction and speed as well as the atmospheric pressure. Our analysis of the identified 179 extreme NOx air pollution events shows that most of them took place under anticyclonic conditions, associated with calm or weak winds (speed <2.5 ms(-1)) of mostly southern to southwestern directions, as well as with low air temperatures and intense stable surface atmospheric conditions. There exists a significant decreasing tendency in NOx air pollution episodic events over the 10-year study period, resulting in very few to none events in the period from 2000 to 2003. As far as it concerns the extreme O3 concentrations, 34 air pollution events were identified, occurring under high air temperatures, variable weak winds and intense solar irradiation. The trends of O3 concentrations are stronger in suburban sites than in urban ones.


Asunto(s)
Contaminantes Atmosféricos/análisis , Óxidos de Nitrógeno/análisis , Ozono/análisis , Grecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...