Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Clin Pharmacol Ther ; 114(4): 780-794, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37404197

RESUMEN

The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.


Asunto(s)
Relevancia Clínica , Transportador Equilibrativo 2 de Nucleósido , Humanos , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Descubrimiento de Drogas
2.
Drug Metab Dispos ; 51(9): 1157-1168, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37258305

RESUMEN

The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Barrera Hematotesticular/metabolismo , Xenobióticos/metabolismo , Testículo/metabolismo , Transporte Biológico , Células de Sertoli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
3.
ACS Omega ; 8(13): 12532-12537, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033868

RESUMEN

Pyronaridine, tilorone and quinacrine are cationic molecules that have in vitro activity against Ebola, SARS-CoV-2 and other viruses. All three molecules have also demonstrated in vivo activity against Ebola in mice, while pyronaridine showed in vivo efficacy against SARS-CoV-2 in mice. We have recently tested these molecules and other antivirals against human organic cation transporters (OCTs) and apical multidrug and toxin extruders (MATEs). Quinacrine was found to be an inhibitor of OCT2, while tilorone and pyronaridine were less potent, and these displayed variability depending on the substrate used. To assess whether any of these three molecules have other potential interactions with additional transporters, we have now screened them at 10 µM against various human efflux and uptake transporters including P-gp, OATP1B3, OAT1, OAT3, MRP1, MRP2, MRP3, BCRP, as well as confirmational testing against OCT1, OCT2, MATE1 and MATE2K. Interestingly, in this study tilorone appears to be a more potent inhibitor of OCT1 and OCT2 than pyronaridine or quinacrine. However, both pyronaridine and quinacrine appear to be more potent inhibitors of MATE1 and MATE2K. None of the three compounds inhibited MRP1, MRP2, MRP3, OAT1, OAT3, P-gp or OATP1B3. Similarly, we previously showed that tilorone and pyronaridine do not inhibit OATP1B1 and have confirmed that quinacrine behaves similarly. In total, these observations suggest that the three compounds only appear to interact with OCTs and MATEs to differing extents, suggesting they may be involved in fewer clinically relevant drug-transporter interactions involving pharmaceutical substrates of the other major transporters tested.

4.
Drug Metab Dispos ; 51(5): 560-571, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732077

RESUMEN

Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.


Asunto(s)
Barrera Hematotesticular , Testículo , Animales , Humanos , Masculino , Barrera Hematotesticular/metabolismo , Testículo/metabolismo , Células de Sertoli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico
5.
Acta Pharm Sin B ; 13(1): 1-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815037

RESUMEN

The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.

6.
J Pharmacol Exp Ther ; 382(3): 299-312, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779861

RESUMEN

The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.


Asunto(s)
Anticonceptivos Masculinos , Transportadores de Anión Orgánico , Animales , Barrera Hematotesticular , Células CHO , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Cromatografía Liquida , Anticonceptivos Masculinos/metabolismo , Anticonceptivos Masculinos/farmacología , Cricetinae , Cricetulus , Perros , Femenino , Células HEK293 , Humanos , Indazoles/farmacología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Espectrometría de Masas en Tándem
7.
Clin Transl Sci ; 15(7): 1599-1605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35505633

RESUMEN

The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and subsequently, coronavirus disease 2019 (COVID-19), has led to the deaths of over 6.1 million people and sparked a greater interest in virology to expedite the development process for antivirals. The US Food and Drug Administration (FDA) granted emergency use authorization for three antivirals: remdesivir, molnupiravir, and nirmatrelvir. Remdesivir and molnupiravir are nucleoside analogs that undergo biotransformation to form active metabolites that incorporate into new viral RNA to stall replication. Unlike remdesivir or molnupiravir, nirmatrelvir is a protease inhibitor that covalently binds to the SARS-CoV-2 3C-like protease to interrupt the viral replication cycle. A recent study identified that remdesivir and the active metabolite of molnupiravir, EIDD-1931, are substrates of equilibrative nucleoside transporters 1 and 2 (ENT1 and 2). Despite the ubiquitous expression of the ENTs, the preclinical efficacy of remdesivir and molnupiravir is not reflected in wide-scale SARS-CoV-2 clinical trials. Interestingly, downregulation of ENT1 and ENT2 expression has been shown in lung epithelial and endothelial cells in response to hypoxia and acute lung injury, although it has not been directly studied in patients with COVID-19. It is possible that the poor efficacy of remdesivir and molnupiravir in these patients may be partially attributed to the repression of ENTs in the lungs, but further studies are warranted. This study investigated the interaction between nirmatrelvir and the ENTs and found that it was a poor inhibitor of ENT-mediated [3 H]uridine uptake at 300 µM. Unlike for remdesivir or EIDD-1931, ENT activity is unlikely to be a factor for nirmatrelvir disposition in humans; however, whether this contributes to the similar in vitro and clinical efficacy will require further mechanistic studies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Células Endoteliales , Humanos , Lactamas , Leucina , Nitrilos , Prolina , SARS-CoV-2 , Estados Unidos/epidemiología
8.
Drug Metab Dispos ; 50(6): 770-780, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307651

RESUMEN

The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.


Asunto(s)
Barrera Hematotesticular , Transportador 1 de Catión Orgánico , Xenobióticos , Barrera Hematotesticular/metabolismo , Cationes/metabolismo , Humanos , Masculino , Transportador 1 de Catión Orgánico/metabolismo , Xenobióticos/metabolismo
9.
Pharmacol Res Perspect ; 9(4): e00831, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288585

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacocinética , Clofarabina/farmacocinética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Testículo/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/antagonistas & inhibidores , Humanos , Lamivudine/sangre , Lamivudine/farmacocinética , Lamivudine/farmacología , Masculino , Ratas Sprague-Dawley , Telomerasa/genética , Tioinosina/análogos & derivados , Tioinosina/sangre , Tioinosina/farmacocinética , Tioinosina/farmacología , Tionucleótidos/sangre , Tionucleótidos/farmacocinética , Tionucleótidos/farmacología
11.
Mol Pharmacol ; 99(2): 147-162, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33262250

RESUMEN

Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.


Asunto(s)
Acetatos/farmacología , Didesoxinucleósidos/farmacología , Tranportador Equilibrativo 1 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/genética , Nevirapina/farmacología , Ticagrelor/farmacología , Uridina/análogos & derivados , Uridina/metabolismo , Teorema de Bayes , Transporte Biológico , Sistemas CRISPR-Cas , Línea Celular , Interacciones Farmacológicas , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Aprendizaje Automático , Tioinosina/análogos & derivados , Tioinosina/farmacología , Uridina/farmacología
12.
Pharmaceutics ; 12(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105674

RESUMEN

The blood-testis barrier (BTB) formed by adjacent Sertoli cells (SCs) limits the entry of many chemicals into seminiferous tubules. Differences in rodent and human substrate-transporter selectivity or kinetics can misrepresent conclusions drawn using rodent in vitro models. Therefore, human in vitro models are preferable when studying transporter dynamics at the BTB. This study describes a hTERT-immortalized human SC line (hT-SerC) with significantly increased replication capacity and minor phenotypic alterations compared to primary human SCs. Notably, hT-SerCs retained similar morphology and minimal changes to mRNA expression of several common SC genes, including AR and FSHR. The mRNA expression of most xenobiotic transporters was within the 2-fold difference threshold in RT-qPCR analysis with some exceptions (OAT3, OCT3, OCTN1, OATP3A1, OATP4A1, ENT1, and ENT2). Functional analysis of the equilibrative nucleoside transporters (ENTs) revealed that primary human SCs and hT-SerCs predominantly express ENT1 with minimal ENT2 expression at the plasma membrane. ENT1-mediated uptake of [3H] uridine was linear over 10 min and inhibited by NBMPR with an IC50 value of 1.35 ± 0.37 nM. These results demonstrate that hT-SerCs can functionally model elements of transport across the human BTB, potentially leading to identification of other transport pathways for xenobiotics, and will guide drug discovery efforts in developing effective BTB-permeable compounds.

13.
ACS Pharmacol Transl Sci ; 3(4): 666-675, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832869

RESUMEN

Recent efforts in drug development against influenza A virus (IAV) M2 proton channel S31N mutant resulted in conjugates of amantadine linked with aryl head heterocycles. To understand the mechanism of drug resistance, we chose a representative M2-S31N inhibitor, compound 3, as a chemical probe to identify resistant mutants. To increase the possibility of identifying novel resistant mutants, serial viral passage experiments were performed with multiple strains of H1N1 and H3N2 viruses in different cell lines. This approach not only identified M2 mutations around the drug-binding site, including the pore-lining residues (V27A, V27F, N31S, and G34E) and an interhelical residue (I32N), but also a new allosteric mutation (R45H), in addition to L46P previously identified, located at the C-terminus of M2 that is more than 10 Å away from the drug-binding site. The effects of each mutation were next investigated using electrophysiology, recombinant viruses, and molecular dynamics (MD) simulations. The reduced sensitivity in channel blockage correlated with increased drug resistance in antiviral assays using recombinant viruses. The MD simulations show that the V27A, V27F, G34E, and R45H mutations increase the diameter and hydration state of the pore in complex with compound 3. The Molecular Mechanics Generalized Born (MM-GBSA) calculations result in more positive binding free energies for the complexes of resistant M2 (V27A, V27F, G34E, R45H) with compound 3 compared to the stable complexes (S31N and I32N). Overall, this is the first systematic study of the drug resistance mechanism of M2-S31N channel blockers using multiple viruses in different cell lines.

14.
Drug Metab Dispos ; 48(7): 603-612, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393653

RESUMEN

Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs. Inhibition of [3H]uridine uptake by NBMPR was biphasic, with IC50 values of 11.3 nM for ENT1 and 9.6 µM for ENT2. Uptake measured with 100 nM NBMPR represented ENT2-mediated transport; subtracting that from total uptake represented ENT1-mediated transport. The kinetics of ENT1- and ENT2-mediated [3H]uridine uptake revealed no difference in Jmax (16.53 and 30.40 pmol cm-2 min-1) and an eightfold difference in Kt (13.6 and 108.9 µM). The resulting fivefold difference in intrinsic clearance (Jmax/Kt) for ENT1- and ENT2 transport accounted for observed inhibition of [3H]uridine uptake by 100 nM NBMPR. Millimolar concentrations of the NRTIs emtricitabine, didanosine, lamivudine, stavudine, tenofovir disoproxil, and zalcitabine had no effect on ENT transport activity, whereas abacavir, entecavir, and zidovudine inhibited both transporters with IC50 values of ∼200 µM, 2.5 mM, and 2 mM, respectively. Using liquid chromatography-tandem mass spectrometry and [3H] compounds, the data suggest that entecavir is an ENT substrate, abacavir is an ENT inhibitor, and zidovudine uptake is carrier-mediated, although not an ENT substrate. These data show that HeLa S3 cells can be used to explore complex transporter selectivity and are an adequate model for studying ENTs present at the BTB. SIGNIFICANCE STATEMENT: This study characterizes an in vitro model using S-[(4-nitrophenyl)methyl]-6-thioinosine to differentiate between equilibrative nucleoside transporter (ENT) 1- and ENT2-mediated uridine transport in HeLa cells. This provides a method to assess the influence of nucleoside reverse-transcriptase inhibitors on natively expressed transporter function. Determining substrate selectivity of the ENTs in HeLa cells can be effectively translated into the activity of these transporters in Sertoli cells that comprise the blood-testis barrier, thereby assisting targeted drug development of compounds capable of circumventing the blood-testis barrier.


Asunto(s)
Barrera Hematotesticular/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Nucleósidos/farmacocinética , Inhibidores de la Transcriptasa Inversa/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Células HeLa , Humanos , Concentración 50 Inhibidora , Zidovudina/farmacocinética
15.
Eur J Pharm Sci ; 133: 86-94, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30930289

RESUMEN

Influenza virus infection causes substantial morbidity and mortality worldwide. The limited efficacy of oseltamivir in delayed treatment, coupled with the increasing incidences of oseltamivir-resistant strains, calls for next-generation of antiviral drugs. In this study, we discovered NMS-873, an allosteric and specific p97 inhibitor, as a broad-spectrum influenza antiviral through forward chemical genomics screening. NMS-873 shows potent antiviral activity with low-nanomolar EC50s against multiple human influenza A and B viruses, including adamantine-, oseltamivir-, or double resistant strains. Our data further showed that silencing of p97 via siRNA or inhibiting p97 by NMS-873 both inhibited virus replication and retained viral ribonucleoproteins (vRNPs) in the nucleus, confirming p97 is the drug target. Mechanistic studies have shown that the nuclear retention of vRNP with NMS-873 treatment is a combined result of two effects: the reduced viral M1 protein level (indirect effect), and the disruption of p97-NP interactions (direct effect). Taken together, our results suggest that p97 could be a novel antiviral target and its inhibitor, NMS-873, is a promising antiviral drug candidate.


Asunto(s)
Acetanilidas/farmacología , Antivirales/farmacología , Benzotiazoles/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Proteína que Contiene Valosina/antagonistas & inhibidores , Animales , Línea Celular , Perros , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana , Replicación Viral/efectos de los fármacos
16.
ACS Med Chem Lett ; 9(11): 1111-1116, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30429954

RESUMEN

Majority of current circulating influenza A viruses carry the S31N mutation in their M2 genes, rendering AM2-S31N as a high profile antiviral drug target. With our continuous interest in developing AM2-S31N channel blockers as novel antivirals targeting both oseltamivir-sensitive and -resistant influenza A viruses, we report herein the structure-property relationship studies of AM2-S31N inhibitors. The goal was to identify lead compounds with improved microsomal stability and membrane permeability. Two lead compounds, 10d and 10e, were found to have high mouse and human liver microsomal stability (T 1/2 > 145 min) and membrane permeability (>200 nm/s). Both compounds also inhibit both currently circulating oseltamivir-sensitive and -resistant human influenza A viruses (H1N1 and H3N2) with EC50 values ranging from 0.4 to 2.8 µM and a selectivity index of >100. We also showed for the first time that AM2-S31N channel blockers such as 10e inhibited influenza virus replication at both low and high multiply of infection (102-106 pfu/mL) and the inhibition was not cell-type dependent. Overall, these studies have identified two promising lead candidates for further development as antiviral drugs against drug-resistant influenza A viruses.

17.
J Med Chem ; 61(3): 1074-1085, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29341607

RESUMEN

Influenza viruses are respiratory pathogens that are responsible for both seasonal influenza epidemics and occasional influenza pandemics. The narrow therapeutic window of oseltamivir, coupled with the emergence of drug resistance, calls for the next-generation of antivirals. With our continuous interest in developing AM2-S31N inhibitors as oral influenza antivirals, we report here the progress of optimizing the in vitro pharmacokinetic (PK) properties of AM2-S31N inhibitors. Several AM2-S31N inhibitors, including compound 10b, were discovered to have potent channel blockage, single to submicromolar antiviral activity, and favorable in vitro PK properties. The antiviral efficacy of compound 10b was also synergistic with oseltamivir carboxylate. Interestingly, binding kinetic studies (Kd, Kon, and Koff) revealed several AM2-S31N inhibitors that have similar Kd values but significantly different Kon and Koff values. Overall, this study identified a potent lead compound (10b) with improved in vitro PK properties that is suitable for the in vivo mouse model studies.


Asunto(s)
Antivirales/farmacología , Antivirales/farmacocinética , Descubrimiento de Drogas , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Proteínas de la Matriz Viral/antagonistas & inhibidores , Animales , Antivirales/química , Virus de la Influenza A/metabolismo , Ratones , Modelos Moleculares , Conformación Proteica , Distribución Tisular , Proteínas de la Matriz Viral/química
18.
Int J Mol Sci ; 18(9)2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28885544

RESUMEN

Influenza viruses are respiratory pathogens that are responsible for annual influenza epidemics and sporadic influenza pandemics. Oseltamivir (Tamiflu®) is currently the only FDA-approved oral drug that is available for the prevention and treatment of influenza virus infection. However, its narrow therapeutic window, coupled with the increasing incidence of drug resistance, calls for the next generation of influenza antivirals. In this study, we discovered hesperadin, an aurora B kinase inhibitor, as a broad-spectrum influenza antiviral through forward chemical genomics screening. Hesperadin inhibits multiple human clinical isolates of influenza A and B viruses with single to submicromolar efficacy, including oseltamivir-resistant strains. Mechanistic studies revealed that hesperadin inhibits the early stage of viral replication by delaying the nuclear entry of viral ribonucleoprotein complex, thereby inhibiting viral RNA transcription and translation as well as viral protein synthesis. Moreover, a combination of hesperadin with oseltamivir shows synergistic antiviral activity, therefore hesperadin can be used either alone to treat infections by oseltamivir-resistant influenza viruses or used in combination with oseltamivir to delay resistance evolution among oseltamivir-sensitive strains. In summary, the discovery of hesperadin as a broad-spectrum influenza antiviral offers an alternative to combat future influenza epidemics and pandemics.


Asunto(s)
Antivirales/farmacología , Indoles/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Animales , Antivirales/química , Aurora Quinasa B/antagonistas & inhibidores , Células Cultivadas , Perros , Relación Dosis-Respuesta a Droga , Farmacorresistencia Viral , Sinergismo Farmacológico , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/química , Células de Riñón Canino Madin Darby , Oseltamivir/farmacología , Inhibidores de Proteínas Quinasas/química , Sulfonamidas/química , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
19.
Antiviral Res ; 145: 103-113, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28778830

RESUMEN

The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Pirimidinas/farmacología , Células A549 , Animales , Fármacos Anti-VIH/farmacología , Perros , Descubrimiento de Drogas , Farmacorresistencia Viral , Células HEK293 , Transcriptasa Inversa del VIH/farmacología , Humanos , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Células de Riñón Canino Madin Darby , ARN Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...