Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 108
1.
J Agric Food Chem ; 72(10): 5089-5106, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38416110

Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.


Polyamines , Tandem Mass Spectrometry , Animals , Spermidine , Plants , Spermine
2.
Food Res Int ; 178: 113934, 2024 Feb.
Article En | MEDLINE | ID: mdl-38309905

Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.


Nutrients , Pollen , Bees , Humans , Animals , Pollen/chemistry , Flavonoids/analysis , Glycosides/analysis , Phytochemicals/analysis
3.
Molecules ; 28(16)2023 Aug 16.
Article En | MEDLINE | ID: mdl-37630336

At the dawn of a food transition encouraging the consumption of healthy and sustainable non-dairy probiotic products, the development of a fermented functional drink based on Sobacha is considered. Sobacha is an infusion of roasted buckwheat seeds widely consumed in Asian countries for its health benefits. As fermentation improves the nutritional and organoleptic status of grains, the mixed fermentation process involved in the development of kombucha beverages (fermented sweet tea) is conducted by inoculating a symbiotic culture of bacteria and yeasts into the transposable matrix (Sobacha instead of tea). Sobacha, a healthy pseudo-cereal matrix with promising aromas, could be fermented to potentially develop an innovative drink, named "Hakko Sobacha". This neologism would reveal the fermented character of the infusion, Hakko meaning fermented in Japanese. Considering the beverage characterization, the kinetics of the volatile organic compound syntheses were determined using stir-bar sorptive extraction followed by gas chromatography coupled to mass spectrometry analysis. Odor-active compounds were theoretically calculated to estimate the flavor composition. Finally, sensory analyses highlighted the appreciation and preferences of the consumer towards the beverages. The fermentative yield differences observed between the two buckwheat concentration modalities tested seemed to be correlated with the sugar and nutrient levels available from the starch (buckwheat) matrix. Having characterized Hakko Sobacha, this study proposed the possibility of developing new beverages by monitoring the fermentative process. This should enable improved control and enhancement of their sensorial properties, which could in turn lead to greater customer acceptability.


Biological Products , Fagopyrum , Odorants , Gas Chromatography-Mass Spectrometry , Asia , Edible Grain , Tea
4.
J Sci Food Agric ; 103(15): 7896-7904, 2023 Dec.
Article En | MEDLINE | ID: mdl-37486857

BACKGROUND: Rapeseed bee pollen has been recognized as a critical treatment for chronic non-bacterial prostatitis (CNP) and it also can modulate gut microbiota and improve gut health. This study aimed to explore the anti-prostatitis effects of rapeseed bee pollen with or without wall-disruption, and to investigate the connection between this treatment and gut microbiota. RESULTS: The results reveal that rapeseed bee pollen can effectively alleviate chronic non-bacteria prostatitis by selectively regulating gut microbiota, with higher doses and wall-disrupted pollen showing greater efficacy. Treatment with a high dose of wall-disrupted rapeseed bee pollen (WDH, 1.26 g kg-1 body weight) reduced prostate wet weight and prostate index by approximately 32% and 36%, respectively, nearly the levels observed in the control group. Wall-disrupted rapeseed bee pollen treatment also reduced significantly (p < 0.05) the expression of proinflammatory cytokines (IL-6, IL-8, IL-1ß, and TNF-α), as confirmed by immunofluorescence with laser scanning confocal microscope. Our results show that rapeseed bee pollen can inhibit pathogenic bacteria and enhance probiotics, particularly in the Firmicutes-to-Bacteroidetes (F/B) ratio and the abundance of Prevotella (genus). CONCLUSION: This is the first study to investigate the alleviation of CNP with rapeseed bee pollen through gut microbiota. These results seem to provide better understanding for the development of rapeseed bee pollen as a complementary medicine. © 2023 Society of Chemical Industry.


Brassica napus , Brassica rapa , Gastrointestinal Microbiome , Prostatitis , Humans , Male , Bees , Animals , Prostatitis/drug therapy , Prostatitis/metabolism , Pollen/metabolism , Bacteria/genetics
5.
Foods ; 12(8)2023 Apr 15.
Article En | MEDLINE | ID: mdl-37107452

Since the sensorial profile is the cornerstone for the development of kombucha as a beverage with mass market appeal, advanced analytical tools are needed to gain a better understanding of the kinetics of aromatic compounds during the fermentation process to control the sensory profiles of the drink. The kinetics of volatile organic compounds (VOCs) was determined using stir bar sorptive extraction-gas chromatography-mass spectrometry, and odor-active compounds were considered to estimate consumer perception. A total of 87 VOCs were detected in kombucha during the fermentation stages. The synthesis of mainly phenethyl alcohol and isoamyl alcohol probably by Saccharomyces genus led to ester formation. Moreover, the terpene synthesis occurring at the beginning of fermentation (Δ-3-carene, α-phellandrene, γ-terpinene, m- and p-cymene) could be related to yeast activity as well. Principal component analysis identified classes that allowed the major variability explanation, which are carboxylic acids, alcohols, and terpenes. The aromatic analysis accounted for 17 aroma-active compounds. These changes in the evolution of VOCs led to flavor variations: from citrus-floral-sweet notes (geraniol and linalool domination), and fermentation brought intense citrus-herbal-lavender-bergamot notes (α-farnesene). Finally, sweet-floral-bready-honey notes dominated the kombucha flavor (2-phenylethanol). As this study allowed to estimate kombucha sensory profiles, an insight for the development of new drinks by controlling the fermentation process was suggested. Such a methodology should allow a better control and optimization of their sensory profile, which could in turn lead to greater consumer acceptance.

6.
Pathogens ; 12(3)2023 Feb 27.
Article En | MEDLINE | ID: mdl-36986304

The COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been plaguing the world since late 2019/early 2020 and has changed the way we function as a society, halting both economic and social activities worldwide. Classrooms, offices, restaurants, public transport, and other enclosed spaces that typically gather large groups of people indoors, and are considered focal points for the spread of the virus. For society to be able to go "back to normal", it is crucial to keep these places open and functioning. An understanding of the transmission modes occurring in these contexts is essential to set up effective infection control strategies. This understanding was made using a systematic review, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA) 2020 guidelines. We analyze the different parameters influencing airborne transmission indoors, the mathematical models proposed to understand it, and discuss how we can act on these parameters. Methods to judge infection risks through the analysis of the indoor air quality are described. Various mitigation measures are listed, and their efficiency, feasibility, and acceptability are ranked by a panel of experts in the field. Thus, effective ventilation procedures controlled by CO2-monitoring, continued mask wearing, and a strategic control of room occupancy, among other measures, are put forth to enable a safe return to these essential places.

7.
Food Chem ; 405(Pt A): 134800, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36347200

This study aimed at investigating phenolamides and flavonoid glycosides in 20 types of monofloral bee pollen. The plant origins of pollen samples were determined by DNA barcoding, with the purities to over 70 %. The 31 phenolamides and their 33 cis/trans isomers, and 25 flavonoid glycosides were identified; moreover, 19 phenolamides and 14 flavonoid glycosides as new-found compounds in bee pollen. All phenolics and flavonoids are present in the amidation or glycosylation form. The MS/MS cleavage modes of phenolamides and flavonoid glycosides were summarized. Isorhamnetin-3-O-gentiobioside presented the highest levels 23.61 mg/g in apricot pollen. Phenolamides in 11 types of pollen constituted over 1 % of the total weight, especially 3.9 % in rose and 2.8 % in pear pollen. Tri-p-coumaroyl spermidine and di-p-coumaroyl-caffeoyl spermidine respectively accounted for over 2.6 % of the total weight in pear and rose pollen. The richness in phenolamides and flavonoid glycosides can offer bee pollen more bioactivities as functional foods.


Flavonoids , Glycosides , Animals , Bees , Pollen , Spermidine , Tandem Mass Spectrometry , Amides/chemistry
8.
Am J Infect Control ; 50(8): 871-877, 2022 08.
Article En | MEDLINE | ID: mdl-35908825

BACKGROUND: In the context of the SARS-CoV-2 pandemic, reuse of personal protective equipment, specifically that of medical face coverings, has been recommended. The reuse of these typically single-use only items necessitates procedures to inactivate contaminating human respiratory and gastrointestinal pathogens. We previously demonstrated decontamination of surgical masks and respirators contaminated with infectious SARS-CoV-2 and various animal coronaviruses via low concentration- and short exposure methylene blue photochemical treatment (10 µM methylene blue, 30 minutes of 12,500-lux red light or 50,000 lux white light exposure). METHODS: Here, we describe the adaptation of this protocol to the decontamination of a more resistant, non-enveloped gastrointestinal virus and demonstrate efficient photodynamic inactivation of murine norovirus, a human norovirus surrogate. RESULTS: Methylene blue photochemical treatment (100 µM methylene blue, 30 minutes of 12,500-lux red light exposure) of murine norovirus-contaminated masks reduced infectious viral titers by over four orders of magnitude on surgical mask surfaces. DISCUSSION AND CONCLUSIONS: Inactivation of a norovirus, the most difficult to inactivate of the respiratory and gastrointestinal human viruses, can predict the inactivation of any less resistant viral mask contaminant. The protocol developed here thus solidifies the position of methylene blue photochemical decontamination as an important tool in the package of practical pandemic preparedness.


Decontamination , Masks , Methylene Blue , Norovirus , Animals , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Masks/virology , Methylene Blue/toxicity , Mice , SARS-CoV-2
9.
Access Microbiol ; 4(3): 000342, 2022.
Article En | MEDLINE | ID: mdl-35693470

Introduction. In the context of the global pandemic due to SARS-CoV-2, procurement of personal protective equipment during the crisis was problematic. The idea of reusing and decontaminating personal surgical masks in facilities was explored in order to avoid the accumulation of waste and overcome the lack of equipment. Hypothesis. Our hypothesis is that this work will show the decontamination methods assessed are effective for bacteria, such as Staphylococcus aureus and Pseudomonas aeruginosa . Aim. We aim to provide information about the effects of five decontamination procedures (UV treatment, dry heat, vaporized H2O2, ethanol treatment and blue methylene treatment) on S. aureus and P. aeruginosa . These bacteria are the main secondary bacterial pathogens responsible for lung infections in the hospital environment. Methodology. The surgical masks and the filtering facepiece respirators were inoculated with two bacterial strains ( S. aureus ATCC 29213 and P. aeruginosa S0599) and submitted to five decontamination treatments: vaporized H2O2 (VHP), UV irradiation, dry heat treatment, ethanol bath treatment and blue methylene treatment. Direct and indirect microbiology assessments were performed on three positive controls, five treated masks and one negative control. Results. The five decontaminations showed significant (P<0.05) but different degrees of reductions of S. aureus and P. aeruginosa . VHP, dry heat treatment and ethanol treatment adequately reduced the initial contamination. The 4 min UV treatment allowed only a reduction to five orders of magnitude for face mask respirators. The methylene blue treatment induced a reduction to two orders of magnitude. Conclusions. The three methods that showed a log10 reduction factor of 6 were the dry heat method, VHP and ethanol bath treatment. These methods are effective and their establishment in the medical field are easy but require economic investment.

10.
Arch Public Health ; 80(1): 71, 2022 Mar 04.
Article En | MEDLINE | ID: mdl-35241162

BACKGROUND: The role played by large-scale repetitive SARS-CoV-2 screening programs within university populations interacting continuously with an urban environment, is unknown. Our objective was to develop a model capable of predicting the dispersion of viral contamination among university populations dividing their time between social and academic environments. METHODS: Data was collected through real, large-scale testing developed at the University of Liège, Belgium, during the period Sept. 28th-Oct. 29th 2020. The screening, offered to students and staff (n = 30,000), began 2 weeks after the re-opening of the campus but had to be halted after 5 weeks due to an imposed general lockdown. The data was then used to feed a two-population model (University + surrounding environment) implementing a generalized susceptible-exposed-infected-removed compartmental modeling framework. RESULTS: The considered two-population model was sufficiently versatile to capture the known dynamics of the pandemic. The reproduction number was estimated to be significantly larger on campus than in the urban population, with a net difference of 0.5 in the most severe conditions. The low adhesion rate for screening (22.6% on average) and the large reproduction number meant the pandemic could not be contained. However, the weekly screening could have prevented 1393 cases (i.e. 4.6% of the university population; 95% CI: 4.4-4.8%) compared to a modeled situation without testing. CONCLUSION: In a real life setting in a University campus, periodic screening could contribute to limiting the SARS-CoV-2 pandemic cycle but is highly dependent on its environment.

11.
Infect Control Hosp Epidemiol ; 43(7): 876-885, 2022 07.
Article En | MEDLINE | ID: mdl-34016200

OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. DESIGN: The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance. METHODS: MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 µM MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. RESULTS: Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to >99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O3. CONCLUSIONS: MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings.


COVID-19 , Virus Diseases , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Masks , Methylene Blue/pharmacology , N95 Respirators , Personal Protective Equipment , SARS-CoV-2
12.
Infect Prev Pract ; 3(1): 100111, 2021 Mar.
Article En | MEDLINE | ID: mdl-34316573

In the context of the SARS-CoV-2 pandemic, reuse of surgical masks and filtering facepiece respirators has been recommended. Their reuse necessitates procedures to inactivate contaminating human respiratory and oral pathogens. We previously demonstrated decontamination of masks and respirators contaminated with an infectious SARS-CoV-2 surrogate via ultraviolet germicidal irradiation, vaporised hydrogen peroxide, and use of dry heat. Here, we show that these same methods efficiently inactivate a more resistant, non-enveloped oral virus; decontamination of infectious murine norovirus-contaminated masks and respirators reduced viral titres by over four orders of magnitude on mask or respirator coupons.

13.
PLoS One ; 16(5): e0251872, 2021.
Article En | MEDLINE | ID: mdl-34010337

BACKGROUND: As the SARS-CoV-2 pandemic accelerates, the supply of personal protective equipment remains under strain. To combat shortages, re-use of surgical masks and filtering facepiece respirators has been recommended. Prior decontamination is paramount to the re-use of these typically single-use only items and, without compromising their integrity, must guarantee inactivation of SARS-CoV-2 and other contaminating pathogens. AIM: We provide information on the effect of time-dependent passive decontamination (infectivity loss over time during room temperature storage in a breathable bag) and evaluate inactivation of a SARS-CoV-2 surrogate and a non-enveloped model virus as well as mask and respirator integrity following active multiple-cycle vaporised hydrogen peroxide (VHP), ultraviolet germicidal irradiation (UVGI), and dry heat (DH) decontamination. METHODS: Masks and respirators, inoculated with infectious porcine respiratory coronavirus or murine norovirus, were submitted to passive decontamination or single or multiple active decontamination cycles; viruses were recovered from sample materials and viral titres were measured via TCID50 assay. In parallel, filtration efficiency tests and breathability tests were performed according to EN standard 14683 and NIOSH regulations. RESULTS AND DISCUSSION: Infectious porcine respiratory coronavirus and murine norovirus remained detectable on masks and respirators up to five and seven days of passive decontamination. Single and multiple cycles of VHP-, UVGI-, and DH were shown to not adversely affect bacterial filtration efficiency of masks. Single- and multiple UVGI did not adversely affect respirator filtration efficiency, while VHP and DH induced a decrease in filtration efficiency after one or three decontamination cycles. Multiple cycles of VHP-, UVGI-, and DH slightly decreased airflow resistance of masks but did not adversely affect respirator breathability. VHP and UVGI efficiently inactivated both viruses after five, DH after three, decontamination cycles, permitting demonstration of a loss of infectivity by more than three orders of magnitude. This multi-disciplinal approach provides important information on how often a given PPE item may be safely reused.


COVID-19/metabolism , Decontamination/methods , Hydrogen Peroxide/pharmacology , Norovirus/drug effects , Personal Protective Equipment/supply & distribution , SARS-CoV-2/drug effects , Anti-Infective Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Equipment Reuse , Hot Temperature , Humans , Masks/microbiology , Norovirus/isolation & purification , Pandemics , Personal Protective Equipment/microbiology , Respiratory Protective Devices/microbiology , SARS-CoV-2/isolation & purification , Ultraviolet Rays , Ultraviolet Therapy , Ventilators, Mechanical/microbiology , Volatilization
14.
Foods ; 8(10)2019 Sep 27.
Article En | MEDLINE | ID: mdl-31569748

Honey composition and color depend greatly on the botanical and geographical origin. Water content, water activity and color of 50 declared acacia samples, collected from three different geographical zones of Romania, together with chromatographic determination of sugar spectrum were analyzed. A number of 79 volatile compounds from the classes of: Alcohols, aldehydes, esters, ketones, sulphur compounds, aliphatic hydrocarbons, nitrogen compounds, carboxylic acids, aromatic acids and ethers were identified by solid-phase micro-extraction and gas-chromatography mass spectrometry. The overall volatile profile and sugar spectrum of the investigated honey samples allow the differentiation of geographical origin for the acacia honey samples subjected to analysis. The statistical models of the chromatic determination, physicochemical parameters and volatile profile was optimal to characterize the honey samples and group them into three geographical origins, even they belong to the same botanical origin.

15.
Food Res Int ; 106: 503-508, 2018 04.
Article En | MEDLINE | ID: mdl-29579954

Mealworms are new food products in Europe, but consumers do not know how to cook them. Although cooking could increase the safety, acceptability, palatability, and digestibility of insects, the heating process could have deleterious effects on protein and lipid quality. Therefore, this study characterized the effects of different household cooking methods (boiling, pan-frying, vacuum cooking, and oven cooking) on the microbial load and nutritive value of mealworms, with a focus on protein digestibility and fatty acid composition. Boiling and cooking under vacuum were the most efficient techniques to reduce microbial load while maintaining the high levels of protein and polyunsaturated fatty acids of mealworms. Cooking method-related changes were very low on macronutrients content except for pan-fried mealworms which exhibited the highest lipid content. Cooking slightly changed fatty acid composition of mealworms by principally decreasing their level of saturated fatty acids but also increased the in vitro crude protein digestibility of mealworms.


Bacteria/isolation & purification , Cooking/methods , Dietary Proteins/analysis , Fatty Acids/analysis , Food Microbiology/methods , Hot Temperature , Insect Proteins/analysis , Nutritive Value , Tenebrio , Animals , Bacteria/classification , Digestion , Humans , Tenebrio/chemistry , Tenebrio/microbiology
16.
Insects ; 8(1)2017 Jan 13.
Article En | MEDLINE | ID: mdl-28098752

Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crickets from European farms and smoked termites and caterpillars from a traditional Congolese market) and to evaluate the efficiency of different processing methods (blanching for all species and freeze-drying and sterilization for European species) in reducing microorganism counts. All untreated insect samples had a total aerobic count higher than the limit for fresh minced meat (6.7 log cfu/g). Nevertheless, a species-dependent blanching step has led to a reduction of the total aerobic count under this limit, except for one caterpillar species. Freeze-drying and sterilization treatments on European species were also effective in reducing the total aerobic count. Yeast and mold counts for untreated insects were above the Good Manufacturing Practice limits for raw meat, but all treatments attained a reduction of these microorganisms under this limit. These results confirmed that fresh insects, but also smoked insects from non-European trades, need a cooking step (at least composed of a first blanching step) before consumption. Therefore, blanching timing for each studied insect species is proposed and discussed.

17.
J Chem Ecol ; 43(2): 164-171, 2017 Feb.
Article En | MEDLINE | ID: mdl-28097605

Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-ß-farnesene (Eßf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO2 concentrations over several generations. We found that an increase in CO2 concentration reduced the production (i.e., individual content) and emission (released under predation events) of Eßf. While no difference in Eßf neuronal perception was observed, we found that an increase in CO2 strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels.


Air Pollutants/analysis , Animal Communication , Aphids/physiology , Carbon Dioxide/analysis , Escape Reaction/drug effects , Pheromones/metabolism , Sesquiterpenes/metabolism , Air Pollutants/toxicity , Animals , Carbon Dioxide/toxicity , Coleoptera/physiology , Dose-Response Relationship, Drug , Escape Reaction/physiology , Pheromones/analysis , Predatory Behavior , Sesquiterpenes/analysis
18.
Insect Sci ; 24(2): 278-284, 2017 Apr.
Article En | MEDLINE | ID: mdl-26639575

Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses.


Ants/physiology , Aphids/physiology , Smell , Symbiosis , Animals , Aphids/microbiology , Bacteria/chemistry , Choice Behavior , Pheromones/analysis , Species Specificity , Volatile Organic Compounds/analysis
19.
Anal Chem Insights ; 11: 49-57, 2016.
Article En | MEDLINE | ID: mdl-27547032

Honey polyphenols have been studied with the objective of relating honeys to their floral sources. Initially synthesized by plant, these polyphenols can be found in the plant's nectar, which are collected by bees, which convert the nectar into honey. Consequently, polyphenols constitute minor components of honey. The development of a solid-phase extraction method for honey polyphenols is presented in this study. The technique employs Amberlite XAD-2 adsorbent and was tested on monofloral honeys from six different plants: acacia, chestnut, eucalyptus, thyme, sunflower, and wild carrot. Analyses were performed using high-performance liquid chromatography coupled with UV detection and mass spectrometry. Several phenolic acids and flavonoids were identified: caffeic and p-coumaric acids, quercetin, kaempferol, naringenin, chrysin, and pinocembrin. Generally, the quantity of a given polyphenol in the honey was around 0.2 mg/100 g of honey, except for chestnut honey, which contained around 3.0 mg of p-coumaric acid/100 g of honey. Analyses highlighted significant formation of cis isomers for phenolic acids during the extraction despite protection from light.

20.
Prev Vet Med ; 124: 58-68, 2016 Feb 01.
Article En | MEDLINE | ID: mdl-26775817

Emergence of West Nile Virus was recently recorded in several European countries, which can lead to severe health problems in horse populations. Europe is also at risk of introduction of mosquito-borne equine alphavirus from Americas. Prevention of these arboviruses requires a clear understanding of transmission cycles, especially their vectors. To characterize mosquito fauna, their ecology and identify potential vectors of equine arboviruses in Belgium, entomological surveys of six equestrian farms located in the Wolloon Region were conducted during 2011-2012. The harvest of mosquitoes was based on larval sampling (272 samples from 111 breeding sites) and monthly adults trapping (CO2-baited traps, Mosquito Magnet Liberty Plus). Among 51,493 larvae and 319 adult mosquitoes collected, morphological identification showed the presence of 11 species: Anopheles claviger (Meigen), An. maculipennis s.l. (Meigen), An. plumbeus (Stephens), Culex hortensis (Ficalbi), Cx. territans (Walker), Cx. pipiens s.l. L., Cx. torrentium (Martini), Coquillettidia richiardii (Ficalbi), Culiseta annulata (Schrank), Aedes cantans (Meigen), Ae. geniculatus (Olivier). Molecular identification of Cx. pipiens species complex allowed the detection of three molecular forms, Pipiens (92.3%), Molestus (4.6%) and Hybrid (3.1%). Larvae of Cx. pipiens sl and Cx. torrentium were omnipresent and the most abundant species. Water troughs, ponds and slurry (liquid manure) were the most favorable breeding sites of mosquito larvae. Based upon behavior and ecology of the identified mosquito species, Studied Belgian equestrian farms seem to provide a suitable environment and breeding sites for the proliferation of potential vectors of arboviruses and those being a real nuisance problem for horses and neighboring inhabitants.


Arbovirus Infections/veterinary , Biodiversity , Culicidae/classification , Culicidae/physiology , Horse Diseases/transmission , Insect Vectors/classification , Insect Vectors/physiology , Animal Husbandry , Animals , Arbovirus Infections/transmission , Arboviruses/physiology , Belgium , Culicidae/virology , Horses , Insect Vectors/virology , Population Dynamics , Seasons
...