Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37913778

RESUMEN

We report on the chemical structure of Cu(In,Ga)Se2 (CIGSe) thin-film solar cell absorber surfaces and their interface with a sputter-deposited Ga2O3 buffer. The CIGSe samples were exposed to a RbF postdeposition treatment and an ammonia-based rinsing step, as used in corresponding thin-film solar cells. For a detailed chemical analysis of the impact of these treatments, we employed laboratory-based X-ray photoelectron spectroscopy, X-ray-excited Auger electron spectroscopy, and synchrotron-based hard X-ray photoelectron spectroscopy. On the RbF-treated surface, we find both Rb and F, which are then partly (Rb) and completely (F) removed by the rinse. The rinse also removes Ga-F, Ga-O, and In-O surface bonds and reduces the Ga/(Ga + In) ratio at the CIGSe absorber surface. After Ga2O3 deposition, we identify the formation of In oxides and the diffusion of Rb and small amounts of F into/onto the Ga2O3 buffer layer but no indication of the formation of hydroxides.

2.
ACS Omega ; 8(5): 4921-4927, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36777614

RESUMEN

The sulfur L2,3 X-ray emission spectra of the alkaline earth metal sulfides BeS, MgS, CaS, SrS, and BaS are investigated and compared with spectra calculations based on density functional theory. Very distinct spectral shapes are found for the different compounds. With decreasing electronegativity of the cation, that is, increasing ionic bonding character, the upper valence band width and its relative spectral intensity decrease. These general trends are qualitatively reproduced by the spectra calculations, which give quite an accurate description of the spectral shapes in the upper valence band region. On the low energy side of the sulfur 3s → 2p transition dominating the spectra, we find strong satellites caused by "semi-Auger" decays involving configuration interaction. These satellites, previously believed to be energetically forbidden for sulfur L2,3 emission and only observed for the L2,3 emission of Cl to Cr, increase in intensity as the bonding character becomes more ionic and dominate the spectra for SrS and BaS. The intensities, energies, and widths of the satellites vary strongly between the investigated compounds, giving a very specific spectral fingerprint that can be used for speciation analysis.

3.
J Phys Chem B ; 126(48): 10185-10193, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36418225

RESUMEN

The amino group of proline is part of a pyrrolidine ring, which makes it unique among the proteinogenic amino acids. To unravel its full electronic structure, proline in solid state and aqueous solution is investigated using X-ray emission spectroscopy and resonant inelastic soft X-ray scattering. By controlling the pH value of the solution, proline is studied in its cationic, zwitterionic, and anionic configurations. The spectra are analyzed within a "building-block principle" by comparing with suitable reference molecules, i.e., acetic acid, cysteine, and pyrrolidine, as well as with spectral calculations based on density functional theory. We find that the electronic structure of the carboxyl group of proline is very similar to that of other amino acids as well as acetic acid. In contrast, the electronic structure of the amino group is significantly different and strongly influenced by the ring structure of proline.


Asunto(s)
Acetatos , Prolina , Rayos X , Espectrometría por Rayos X
4.
J Phys Chem C Nanomater Interfaces ; 125(46): 25917-25926, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34868447

RESUMEN

The electronic structures of four precursors for organic-inorganic hybrid perovskites, namely, methylammonium chloride and iodide, as well as formamidinium bromide and iodide, are investigated by X-ray emission (XE) spectroscopy at the carbon and nitrogen K-edges. The XE spectra are analyzed based on density functional theory calculations. We simulate the XE spectra at the Kohn-Sham level for ground-state geometries and carry out detailed analyses of the molecular orbitals and the electronic density of states to give a thorough understanding of the spectra. Major parts of the spectra can be described by the model of the corresponding isolated organic cation, whereas high-emission energy peaks in the nitrogen K-edge XE spectra arise from electronic transitions involving hybrids of the molecular and atomic orbitals of the cations and halides, respectively. We find that the interaction of the methylammonium cation is stronger with the chlorine than with the iodine anion. Furthermore, our detailed theoretical analysis highlights the strong influence of ultrafast proton dynamics in the core-excited states, which is an intrinsic effect of the XE process. The inclusion of this effect is necessary for an accurate description of the experimental nitrogen K-edge X-ray emission spectra and gives information on the hydrogen-bonding strengths in the different precursor materials.

5.
ACS Appl Mater Interfaces ; 13(44): 53202-53210, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709800

RESUMEN

2D/3D perovskite heterostructures have emerged as a promising material composition to reduce nonradiative recombination in perovskite-based LEDs and solar cells. Such heterostructures can be created by a surface treatment with large organic cations, for example, n-butylammonium bromide (BABr). To understand the impact of the BABr surface treatment on the double-cation (Cs0.17FA0.83Pb(I0.6Br0.4)3) (FA = formamidinium) perovskite thin film and further optimize the corresponding structures, an in-depth understanding of the chemical and electronic properties of the involved surfaces, interfaces, and bulk is required. Hence, we study the impact of the BABr treatment with a combination of surface-sensitive X-ray photoelectron spectroscopy and bulk-sensitive resonant inelastic soft X-ray scattering (RIXS). A quantitative analysis of the BABr-treated perovskite thin film shows a modified chemical perovskite surface environment of carbon, nitrogen, bromine, iodine, and lead, indicating that the treatment leads to a perovskite surface with a modified composition and bonding structure. With K-edge RIXS, the local environment at the nitrogen and carbon atoms is probed, allowing us to identify the presence of BABr in the perovskite bulk albeit with a modified bonding environment. This, in turn, identifies a "hidden parameter" for the optimization of the BABr treatment and overall performance of 2D/3D perovskite solar cell absorbers.

6.
ACS Appl Mater Interfaces ; 13(39): 46488-46498, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34551256

RESUMEN

Narrow-band gap (NBG) Sn-Pb perovskites with band gaps of ∼1.2 eV, which correspond to a broad photon absorption range up to ∼1033 nm, are highly promising candidates for bottom solar cells in all-perovskite tandem photovoltaics. To exploit their potential, avoiding optical losses in the top layer stacks of the tandem configuration is essential. This study addresses this challenge in two ways (1) removing the hole-transport layer (HTL) and (2) implementing highly transparent hydrogen-doped indium oxide In2O3:H (IO:H) electrodes instead of the commonly used indium tin oxide (ITO). Removing HTL reduces parasitic absorption loss in shorter wavelengths without compromising the photovoltaic performance. IO:H, with an ultra-low near-infrared optical loss and a high charge carrier mobility, results in a remarkable increase in the photocurrent of the semitransparent top and (HTL-free) NBG bottom perovskite solar cells when substituted for ITO. As a result, an IO:H-based four-terminal all-perovskite tandem solar cell (4T all-PTSCs) with a power conversion efficiency (PCE) as high as 24.8% is demonstrated, outperforming ITO-based 4T all-PTSCs with PCE up to 23.3%.

7.
Anal Chem ; 93(23): 8300-8308, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34076421

RESUMEN

The chemical and electronic structures of 15 different sulfates are studied using S L2,3 soft X-ray emission spectroscopy (XES). Sulfur L2,3 XES spectra of sulfates are distinctively different from those of other sulfur compounds, which makes XES a powerful technique for sulfate detection. Furthermore, subtle but distinct differences between the spectra of sulfates with different cations are observed, which allow a further differentiation of the specific compound. Most prominently, the position and width of the emission from "S 3s" derived bands systematically vary for different compounds, which can be understood with electronic structure and spectral calculations based on density functional theory.


Asunto(s)
Sulfatos , Óxidos de Azufre , Espectrometría por Rayos X , Azufre
8.
J Phys Chem Lett ; 12(16): 3885-3890, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33856793

RESUMEN

The organic component (methylammonium) of CH3NH3PbI3-xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic-inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.

9.
J Synchrotron Radiat ; 28(Pt 2): 609-617, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650573

RESUMEN

X-SPEC is a high-flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X-ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable-line-space plane-grating monochromator, a double-crystal monochromator and three Kirkpatrick-Baez mirror pairs. By selectively moving these elements in or out of the beam, X-SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra-high-vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X-ray absorption spectroscopy (XAS), extended X-ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X-ray PES (HAXPES), as well as X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS).

10.
RSC Adv ; 11(21): 12687-12695, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35423831

RESUMEN

Sulfur/selenium grading is a widely used optimization strategy in kesterite thin-film solar cells to obtain a bandgap-graded absorber material and to optimize optical and electrical properties of the solar-cell device. In this work, we present a novel approach to introduce a [S]/([S] + [Se]) grading for Cu2ZnSn(S,Se)4 solar cells. In contrast to commonly used methods with slow process dynamics, the presented approach aims to create a fast sulfurization reaction on the surface of pure selenide kesterite absorbers by using highly reactive H2S gas and high sulfurization temperatures in a rapid flash-type process. With a combination of X-ray photoelectron spectroscopy, X-ray emission spectroscopy, Raman spectroscopy, and Raman-shallow angle cross sections spectroscopy, we gain depth-varied information on the [S]/([S] + [Se]) ratio and discuss the impact of different process parameter variations on the material and device properties. The results demonstrate the potential of the developed process to generate a steep gradient of sulfur that is confined mainly to the surface region of the absorber film.

11.
J Phys Chem Lett ; 11(18): 7476-7482, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32787301

RESUMEN

The nitrogen K-edge resonant inelastic X-ray scattering (RIXS) map of nitric oxide (NO) has been measured and simulated to provide a detailed analysis of the observed features. High-resolution experimental RIXS maps were collected using an in situ gas flow cell and a high-transmission soft X-ray spectrometer. Accurate descriptions of the ground, excited, and core-excited states are based upon restricted active space self-consistent-field calculations using second order multiconfigurational perturbation theory. The nitrogen K-edge RIXS map of NO shows a range of features that can be assigned to intermediate states arising from 1s → π* and 1s → Rydberg excitations; additional bands are attributed to doubly excited intermediate states comprising 1s → π* and π → π* excitations. These results provide a detailed picture of RIXS for an open-shell molecule and an extensive description of the core-excited electronic structure of NO, an important molecule in many chemical and biological processes.

12.
ACS Appl Mater Interfaces ; 11(42): 39315-39323, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547648

RESUMEN

Synchrotron experiments combining real-time stress, X-ray diffraction, and X-ray reflectivity measurements, complemented by in situ electron diffraction and photon electron spectroscopy measurements, revealed a detailed picture of the interfacial silicide formation during deposition of ultrathin Pd layers on amorphous silicon. Initially, an amorphous Pd2Si interlayer is formed. At a critical thickness of 2.3 nm, this layer crystallizes and the resulting volume reduction leads to a tensile stress buildup. The [111] textured Pd2Si layer continues to grow up to a thickness of ≈3.7 nm and is subsequently covered by a Pd layer with [111] texture. The tensile stress relaxes already during Pd2Si growth. A comparison between the texture formation on SiOx and a-Si shows that the silicide layer serves as a template for the Pd layer, resulting in a surprisingly narrow texture of only 3° after 800 s Pd deposition. The texture formation of Pd and Pd2Si can be explained by the low lattice mismatch between Pd(111) and Pd2Si(111). The combined experimental results indicate a similar interface formation mechanism for Pd on a-Si and c-Si, whereas the resulting silicide texture depends on the Si surface. A new strain relaxation mechanism via grain boundary diffusion is proposed, taking into account the influence of the thickness-dependent crystallization on the material transport through the silicide layer. In combination with the small lattice mismatch, the grain boundary diffusion facilitates the growth of Pd clusters, explaining thus the well-defined thickness of the interfacial silicide layer, which limits the miniaturization of self-organized silicide layers for microelectronic devices.

13.
Adv Mater ; 31(26): e1806660, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30791138

RESUMEN

Thin-film solar cells have great potential to overtake the currently dominant silicon-based solar cell technologies in a strongly growing market. Such thin-film devices consist of a multilayer structure, for which charge-carrier transport across interfaces plays a crucial role in minimizing the associated recombination losses and achieving high solar conversion efficiencies. Further development can strongly profit from a high-level characterization that gives a local, electronic, and chemical picture of the interface properties, which allows for an insight-driven optimization. Herein, the authors' recent progress of applying a "toolbox" of high-level laboratory- and synchrotron-based electron and soft X-ray spectroscopies to characterize the chemical and electronic properties of such applied interfaces is provided. With this toolbox in hand, the activities are paired with those of experts in thin-film solar cell preparation at the cutting edge of current developments to obtain a deeper understanding of the recent improvements in the field, e.g., by studying the influence of so-called "post-deposition treatments", as well as characterizing the properties of interfaces with alternative buffer layer materials that give superior efficiencies on large, module-sized areas.

14.
RSC Adv ; 9(46): 26850-26855, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35528608

RESUMEN

Molybdenum (Mo) is the most commonly used back-contact material for copper zinc tin selenide (CZTSe)-based thin-film solar cells. For most fabrication methods, an interfacial molybdenum diselenide (MoSe2) layer with an uncontrolled thickness is formed, ranging from a few tens of nm up to ≈1 µm. In order to improve the control of the back-contact interface in CZTSe solar cells, the formation of a MoSe2 layer with a homogeneous and defined thickness is necessary. In this study, we use plasma treatments on the as-grown Mo surface prior to the CZTSe absorber formation, which consists of the deposition of stacked metallic layers and the annealing in selenium (Se) atmosphere. The plasma treatments include the application of a pure argon (Ar) plasma and a mixed argon-nitrogen (Ar-N2) plasma. We observe a clear impact of the Ar plasma treatment on the MoSe2 thickness and interfacial morphology. With the Ar-N2 plasma treatment, a nitrided Mo surface can be obtained. Furthermore, we combine the Ar plasma treatment with the application of titanium nitride (TiN) as back-contact barrier and discuss the obtained results in terms of MoSe2 formation and solar cell performance, thus showing possible directions of back-contact engineering for CZTSe solar cells.

15.
ACS Appl Mater Interfaces ; 10(43): 37602-37608, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30272438

RESUMEN

We present a detailed characterization of the chemical structure of the Cu(In,Ga)Se2 thin-film surface and the CdS/Cu(In,Ga)Se2 interface, both with and without a RbF post-deposition treatment (RbF-PDT). For this purpose, X-ray photoelectron and Auger electron spectroscopy, as well as synchrotron-based soft X-ray emission spectroscopy have been employed. Although some similarities with the reported impacts of light-element alkali PDT (i.e., NaF- and KF-PDT) are found, we observe some distinct differences, which might be the reason for the further improved conversion efficiency with heavy-element alkali PDT. In particular, we find that the RbF-PDT reduces, but not fully removes, the copper content at the absorber surface and does not induce a significant change in the Ga/(Ga + In) ratio. Additionally, we observe an increased amount of indium and gallium oxides at the surface of the treated absorber. These oxides are partly (in the case of indium) and completely (in the case of gallium) removed from the CdS/Cu(In,Ga)Se2 interface by the chemical bath deposition of the CdS buffer.

16.
ACS Appl Mater Interfaces ; 8(48): 33256-33263, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934158

RESUMEN

The chemical structure of the Zn(O,S)/Cu(In,Ga)Se2 interface in high-efficiency photovoltaic devices is investigated using X-ray photoelectron and Auger electron spectroscopy, as well as soft X-ray emission spectroscopy. We find that the Ga/(Ga+In) ratio at the absorber surface does not change with the formation of the Zn(O,S)/Cu(In,Ga)Se2 interface. Furthermore, we find evidence for Zn in multiple bonding environments, including ZnS, ZnO, Zn(OH)2, and ZnSe. We also observe dehydrogenation of the Zn(O,S) buffer layer after Ar+ ion treatment. Similar to high-efficiency CdS/Cu(In,Ga)Se2 devices, intermixing occurs at the interface, with diffusion of Se into the buffer, and the formation of S-In and/or S-Ga bonds at or close to the interface.

17.
ACS Appl Mater Interfaces ; 8(32): 21101-5, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27463021

RESUMEN

Using reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (InxSy) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-ε(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the InxSy film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties. In contrast, the properties of the CIGSSe surface differ significantly from the bulk. In particular, a larger (surface) band gap than for bulk-sensitive measurements is observed, providing a complementary and independent confirmation of earlier photoelectron spectroscopy results. Finally, we derive the inelastic mean free path λ for electrons in InxSy, annealed InxSy, and CIGSSe at a kinetic energy of 1000 eV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...