Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Blood Press ; 33(1): 2378878, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39037935

RESUMEN

Purpose The Endocrine Society (ES) guidelines recommend screening for primary aldosteronism (PA) in high risk hypertensive patients presenting with at least one of seven criteria (resistant HTN, hypokalaemia, adrenal nodule, etc.) Although guidelines are clear and screening is simple, compliance rates among clinicians are extremely low. This results in underdiagnosis of early disease, leading to cadiovasculaer complications and the extra-burden of advanced chronic kidney disease. We aimed to evaluate the screening rates in our Nephrology and Hypertension clinics, as an example of a dedicated Hypertension Excellence Centre. Materials and methods Data on adult hypertensive patients was retrieved from January 2018 to December 2020. Included in the study were hypertensive patients who had at least one of the ES criteria for PA screening. Of all suitable patients, we compared those who were screened for PA to patients who were not screened. Univariate and multivariate cox regression analyses were used for comparison between groups. Results Of 661 patients with HTN, 218 patients (33%) met the ES guidelines for PA screening. Forty-six of them (21.1%) were referred for screening. Advanced age and male gender were associated with lower screening referral rates. Odds ratio for age was 0.945 for every year (95% CI 0.915 - 0.975). There was a trend towards decreased referral rate in advanced kidney disease. Conclusions A 21% screening rate, suggests that many cases of PA are likely missed, more often in older patients. We therefore advocate for PA screening of all hypertensive patients, especially elderly patients with CKD, in whom clinicians' awareness is low but the absolute risk is high.


Aldosterone is a hormone secreted from the adrenal gland.Oversecretion of aldosterone (Primary Aldosteronism [PA]) causes salt retention, urinary loss of potassium and difficult to control hypertension.Both hypertension and hyperaldosteronism act synergistically and cause, over time, severe cardiac, vascular and renal damage.Different guidelines support doctors' decision-making algorithm, suggesting who should be evaluated for aldosterone hypersecretion.Our study demonstrates that even in an expert hypertension centre, many candidates for screening are missed. Elderly men are specifically underscreened.Since PA is not as rare as once thought, and can have a devastating impact on patients' health, we suggest screening all hypertensive patients for autonomous hypersecretion of aldosterone.


Asunto(s)
Hiperaldosteronismo , Hipertensión , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/complicaciones , Masculino , Femenino , Hipertensión/diagnóstico , Hipertensión/complicaciones , Persona de Mediana Edad , Anciano , Tamizaje Masivo , Factores de Edad , Factores Sexuales
2.
Nanoscale ; 16(32): 15240-15255, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39073345

RESUMEN

Super-resolution microscopy has been used to show the formation of receptor clusters and adapted lipid organization of cell membranes for many members of the ErbB receptor family. The clustering behaviour depends on the receptor size and shape, possibly ligand binding or expression activity. Using single molecule localization microscopy (SMLM), we also showed this typical clustering for the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma multiforme (GBM) cells. EGFRvIII is co-expressed with the wild type (EGFRwt) and both receptors are assumed to preferentially form hetero-dimers leading to transactivation and elevated oncogenic EGFR-signalling in GBM cells. Here, we analysed EGFRvIII and EGFRwt co-localization using our already described model system of the glioblastoma cell line DKMG, displaying endogenous EGFRvIII expression. Using EGFRvIII and EGFRwt specific antibodies, EGFR localization and their potential for dimerization in a given membrane cluster were analysed by dual colour SMLM supported by novel approaches of mathematic evaluations including Ripley statistics, persistent homology and similarity algorithms. Surprisingly, cluster analysis, Ripley point-to-point distance statistics for cluster geometry and persistent homology comparing cluster topology, revealed that both EGFRvIII and EGFRwt do primarily not form hetero-dimers but the results support the hypothesis that they tend to form homo-dimers. The ratio of homo-dimers obtained by this calculation was significantly higher (>5σ, standard deviation) than expected from randomly arranged points. In comparison, hetero-dimer formation was only slightly increased. We confirmed these data by immunoprecipitation, which show no co-precipitation of EGFRvIII and EGFRwt. Furthermore, we showed that the topology of the clusters was more similar among the same type than among the different types of receptors. Taken together, these data indicate that EGFRvIII does induce oncogenic signalling by homo-dimerisation and not preferentially by hetero-dimer formation with EGFRwt. These data offer a new perspective on EGFRvIII signalling which will lead to a better understanding of this tumour associated receptor variant in GBM.


Asunto(s)
Receptores ErbB , Glioblastoma , Receptores ErbB/metabolismo , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Multimerización de Proteína , Imagen Individual de Molécula/métodos , Membrana Celular/metabolismo
3.
Chem Rev ; 124(13): 8014-8129, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38842266

RESUMEN

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

4.
Curr Issues Mol Biol ; 45(10): 8152-8172, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37886958

RESUMEN

The spatial organization of euchromatin (EC) and heterochromatin (HC) appears as a cell-type specific network, which seems to have an impact on gene regulation and cell fate. The spatial organization of cohesin should thus also be characteristic for a cell type since it is involved in a TAD (topologically associating domain) formation, and thus in gene regulation or DNA repair processes. Based on the previous hypotheses and results on the general importance of heterochromatin organization on genome functions in particular, the configurations of these organizational units (EC represented by H3K4me3-positive regions, HC represented by H3K9me3-positive regions, cohesins) are investigated in the cell nuclei of different cancer and non-cancerous cell types and under different anti-cancer treatments. Confocal microscopic images of the model cell systems were used and analyzed using analytical processes of quantification created in Fiji, an imaging tool box well established in different fields of science. Human fibroblasts, breast cancer and glioblastoma cells as well as murine embryonal terato-carcinoma cells were used as these cell models and compared according to the different parameters of spatial arrangements. In addition, proliferating, quiescent and from the quiescent state reactivated fibroblasts were analyzed. In some selected cases, the cells were treated with X-rays or azacitidine. Heterogeneous results were obtained by the analyses of the configurations of the three different organizational units: granulation and a loss of H3K4me3-positive regions (EC) occurred after irradiation with 4 Gy or azacitidine treatment. While fibroblasts responded to irradiation with an increase in cohesin and granulation, in breast cancer cells, it resulted in decreases in cohesin and changes in granulation. H3K9me3-positive regions (HC) in fibroblasts experienced increased granulation, whereas in breast cancer cells, the amount of such regions increased. After azacitidine treatment, murine stem cells showed losses of cohesin and granulation and an increase in the granulation of H3K9me3-positive regions. Fibroblasts that were irradiated with 2 Gy only showed irregularities in structural amounts and granulation. Quiescent fibroblasts contained less euchromatin-related H3K4me3-positive signals and cohesin levels as well as higher heterochromatin-related H3K9me3-positive signals than non-quiescent ones. In general, fibroblasts responded more intensely to X-ray irradiation than breast cancer cells. The results indicate the usefulness of model cell systems and show that, in general, characteristic differences initially existing in chromatin and cohesin organizations result in specific responses to anti-cancer treatment.

5.
Biomolecules ; 13(10)2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37892200

RESUMEN

Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.


Asunto(s)
Reparación del ADN , Histonas , Animales , Porcinos , Porcinos Enanos/genética , Porcinos Enanos/metabolismo , Histonas/metabolismo , Relación Dosis-Respuesta en la Radiación , Daño del ADN , Cromatina , Epidermis/metabolismo , Receptores con Dominio Discoidina/genética , Receptores con Dominio Discoidina/metabolismo
6.
Comput Struct Biotechnol J ; 21: 2018-2034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968017

RESUMEN

The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.

7.
Genes (Basel) ; 14(3)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36981025

RESUMEN

Dinucleotides are known as determinants for various structural and physiochemical properties of DNA and for binding affinities of proteins to DNA. These properties (e.g., stiffness) and bound proteins (e.g., transcription factors) are known to influence important biological functions, such as transcription regulation and 3D chromatin organization. Accordingly, the question arises of how the considerable variations in dinucleotide contents of eukaryotic chromosomes could still provide consistent DNA properties resulting in similar functions and 3D conformations. In this work, we investigate the hypothesis that coupled dinucleotide contents influence DNA properties in opposite directions to moderate each other's influences. Analyzing all 2478 chromosomes of 155 eukaryotic species, considering bias from coding sequences and enhancers, we found sets of correlated and anti-correlated dinucleotide contents. Using computational models, we estimated changes of DNA properties resulting from this coupling. We found that especially pure A/T dinucleotides (AA, TT, AT, TA), known to influence histone positioning and AC/GT contents, are relevant moderators and that, e.g., the Roll property, which is known to influence histone affinity of DNA, is preferably moderated. We conclude that dinucleotide contents might indirectly influence transcription and chromatin 3D conformation, via regulation of histone occupancy and/or other mechanisms.


Asunto(s)
Eucariontes , Histonas , Histonas/genética , Eucariontes/genética , Eucariontes/metabolismo , ADN/genética , ADN/química , Cromatina/genética , Células Eucariotas/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769000

RESUMEN

Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.


Asunto(s)
Núcleo Celular , Genoma , Núcleo Celular/metabolismo , Diferenciación Celular/genética
9.
Nanoscale ; 15(2): 742-756, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36524744

RESUMEN

Super-resolution fluorescence microscopy has revolutionized multicolor imaging of nuclear structures due to the combination of high labeling specificity and high resolution. Here we expanded the recently developed fBALM (DNA structure fluctuation-assisted binding activated localization microscopy) method by developing a stable methodological sequence that enables dual-color imaging of high-resolution genomic DNA together with an immunofluorescently labeled intranuclear protein. Our measurements of the nuclear periphery, imaging DNA and LaminB1 in biologically relevant samples, show that this novel dual-color imaging method is feasible for further quantitative evaluations. We were able to study the relative spatial signal organization between DNA and LaminB1 by means of highly specific colocalization measurements at nanometer resolution. Measurements were performed with and without the antifade embedding medium ProLong Gold, which proved to be essential for imaging of LaminB1, but not for imaging of SytoxOrange labeled DNA. The localization precision was used to differentiate between localizations with higher and lower amounts of emitting photons. We interpret high intensity localizations to be renatured DNA sections in which a high amount of Sytox Orange molecules were bound. This could give insight into the denaturation kinetics of DNA during fBALM. These results were further complemented by measurements of γH2AX and H3K9me3 signal organization to demonstrate differences within the chromatin landscape, which were quantified with image processing methods such as Voronoi segmentation.


Asunto(s)
Núcleo Celular , Cromatina , Laminas/genética , Laminas/metabolismo , Núcleo Celular/metabolismo , ADN/química , Microscopía Fluorescente/métodos
10.
Genes (Basel) ; 15(1)2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38254923

RESUMEN

The specific characteristics of k-mer words (2 ≤ k ≤ 11) regarding genomic distribution and evolutionary conservation were recently found. Among them are, in high abundance, words with a tandem repeat structure (repeat unit length of 1 bp to 3 bp). Furthermore, there seems to be a class of extremely short tandem repeats (≤12 bp), so far overlooked, that are non-random-distributed and, therefore, may play a crucial role in the functioning of the genome. In the following article, the positional distributions of these motifs we call super-short tandem repeats (SSTRs) were compared to other functional elements, like genes and retrotransposons. We found length- and sequence-dependent correlations between the local SSTR density and G+C content, and also between the density of SSTRs and genes, as well as correlations with retrotransposon density. In addition to many general interesting relations, we found that SINE Alu has a strong influence on the local SSTR density. Moreover, the observed connection of SSTR patterns to pseudogenes and -exons might imply a special role of SSTRs in gene expression. In summary, our findings support the idea of a special role and the functional relevance of SSTRs in the genome.


Asunto(s)
Repeticiones de Microsatélite , Retroelementos , Humanos , Retroelementos/genética , Composición de Base , ADN Intergénico , Repeticiones de Microsatélite/genética , Cromosomas Humanos , Receptores de Somatostatina
11.
Results Probl Cell Differ ; 70: 3-34, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348103

RESUMEN

The cell nucleus is a complex biological system in which simultaneous reactions and functions take place to keep the cell as an individualized, specialized system running well. The cell nucleus contains chromatin packed in various degrees of density and separated in volumes of chromosome territories and subchromosomal domains. Between the chromatin, however, there is enough "free" space for floating RNA, proteins, enzymes, ATPs, ions, water molecules, etc. which are trafficking by super- and supra-diffusion to the interaction points where they are required. It seems that this trafficking works somehow automatically and drives the system perfectly. After exposure to ionizing radiation causing DNA damage from single base damage up to chromatin double-strand breaks, the whole system "cell nucleus" responds, and repair processes are starting to recover the fully functional and intact system. In molecular biology, many individual epigenetic pathways of DNA damage response or repair of single and double-strand breaks are described. How these responses are embedded into the response of the system as a whole is often out of the focus of consideration. In this article, we want to follow the hypothesis of chromatin architecture's impact on epigenetic pathways and vice versa. Based on the assumption that chromatin acts like an "aperiodic solid state within a limited volume," functionally determined networks and local topologies ("islands") can be defined that drive the appropriate repair process at a given damage site. Experimental results of investigations of the chromatin nano-architecture and DNA repair clusters obtained by means of single-molecule localization microscopy offer hints and perspectives that may contribute to verifying the hypothesis.


Asunto(s)
Cromatina , Reparación del ADN , Cromatina/metabolismo , Daño del ADN , Núcleo Celular , Radiobiología
12.
iScience ; 25(4): 104142, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35434547

RESUMEN

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.

13.
Pharmaceutics ; 14(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35057061

RESUMEN

(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley's distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).

14.
Heliyon ; 8(12): e12607, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619435

RESUMEN

A 76-year-old man was evaluated in our emergency department (ED) for right toe swelling and pain. His initial ED workup revealed volume overload, uncontrolled hypertension, slow atrial fibrillation, refractory hypokalemia, mixed metabolic alkalosis and respiratory acidosis, with a normal plasma pH, and hypernatremia. His medical chart revealed long standing hyperkalemia and metabolic acidosis, related to his diabetic kidney disease. We hypothesized that a short course of daily SPS ingestion (Sodium Polystyrene Sulfonate, "Kayexalate") was the sole etiology for the compound electrolyte abnormalities and the electrolyte "flip flop". SPS ingestion can cause hypokalemia by excessive potassium binding in the gut. SPS exchanging potassium for sodium caused excessive sodium retention leading to hypernatremia, hypertension and volume overload. Volume overload worsened his chronic obstructive sleep apnea and yielded respiratory acidosis. Finally hypokalemia by itself was the main trigger for generation and maintenance of metabolic alkalosis. Urinary electrolytes, and renin and aldosterone levels taken at the ED ruled out primary aldosteronism and renal potassium and hydrogen loss. The patient's potassium was replenished by both PO and IV routes. He was treated for his volume overload and hypertension with furosemide. Spironolactone and amiloride, potassium sparing diuretics, were cautiously given only during his hypokalemic phase. His plasma sodium and potassium levels, blood pressure and volume status gradually improved. "Kayexalate" effect should be suspected in a patient presenting with unexplained hypokalemia and alkalosis, accompanied by volume overload rather than volume depletion, developing shortly after SPS ingestion. ED doctors should specifically ask CKD or ESRD patients on SPS, as it otherwise can skip the medication reconciliation process.

15.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771723

RESUMEN

DNA double-strand breaks (DSBs), known as the most severe damage in chromatin, were induced in breast cancer cells and normal skin fibroblasts by 2 Gy ionizing photon radiation. In response to DSB induction, phosphorylation of the histone variant H2AX to γH2AX was observed in the form of foci visualized by specific antibodies. By means of super-resolution single-molecule localization microscopy (SMLM), it has been recently shown in a first article about these data that these foci can be separated into clusters of about the same size (diameter ~400 nm). The number of clusters increased with the dose applied and decreased with the repair time. It has also been shown that during the repair period, antibody-labeled MRE11 clusters of about half of the γH2AX cluster diameter were formed inside several γH2AX clusters. MRE11 is part of the MRE11-RAD50-NBS1 (MRN) complex, which is known as a DNA strand resection and broken-end bridging component in homologous recombination repair (HRR) and alternative non-homologous end joining (a-NHEJ). This article is a follow-up of the former ones applying novel procedures of mathematics (topology) and similarity measurements on the data set: to obtain a measure for cluster shape and shape similarities, topological quantifications employing persistent homology were calculated and compared. In addition, based on our findings that γH2AX clusters associated with heterochromatin show a high degree of similarity independently of dose and repair time, these earlier published topological analyses and similarity calculations comparing repair foci within individual cells were extended by topological data averaging (2nd-generation heatmaps) over all cells analyzed at a given repair time point; thereby, the two dimensions (0 and 1) expressed by components and holes were studied separately. Finally, these mean value heatmaps were averaged, in addition. For γH2AX clusters, in both normal fibroblast and MCF-7 cancer cell lines, an increased similarity was found at early time points (up to 60 min) after irradiation for both components and holes of clusters. In contrast, for MRE11, the peak in similarity was found at later time points (2 h up to 48 h) after irradiation. In general, the normal fibroblasts showed quicker phosphorylation of H2AX and recruitment of MRE11 to γH2AX clusters compared to breast cancer cells and a shorter time interval of increased similarity for γH2AX clusters. γH2AX foci and randomly distributed MRE11 molecules naturally occurring in non-irradiated control cells did not show any significant topological similarity.

16.
Genes (Basel) ; 12(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34680967

RESUMEN

Several strongly conserved DNA sequence patterns in and between introns and intergenic regions (IIRs) consisting of short tandem repeats (STRs) with repeat lengths <3 bp have already been described in the kingdom of Animalia. In this work, we expanded the search and analysis of conserved DNA sequence patterns to a wider range of eukaryotic genomes. Our aims were to confirm the conservation of these patterns, to support the hypothesis on their functional constraints and/or the identification of unknown patterns. We pairwise compared genomic DNA sequences of genes, exons, CDS, introns and intergenic regions of 34 Embryophyta (land plants), 30 Protista and 29 Fungi using established k-mer-based (alignment-free) comparison methods. Additionally, the results were compared with values derived for Animalia in former studies. We confirmed strong correlations between the sequence structures of IIRs spanning over the entire domain of Eukaryotes. We found that the high correlations within introns, intergenic regions and between the two are a result of conserved abundancies of STRs with repeat units ≤2 bp (e.g., (AT)n). For some sequence patterns and their inverse complementary sequences, we found a violation of equal distribution on complementary DNA strands in a subset of genomes. Looking at mismatches within the identified STR patterns, we found specific preferences for certain nucleotides stable over all four phylogenetic kingdoms. We conclude that all of these conserved patterns between IIRs indicate a shared function of these sequence structures related to STRs.


Asunto(s)
ADN Intergénico/genética , Evolución Molecular , Genoma/genética , Intrones/genética , Eucariontes/genética
17.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360944

RESUMEN

Endothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data in the setting of a single endothelial cell monolayer. Human umbilical vein endothelial cells were grown on Transwell filters. Transendothelial electrical resistance (TER) and 10 kDa FITC dextran flux were measured using Alanyl-Glutamine (AlaGln) as a paracellular barrier modulator. Single monolayers were immunolabelled for Zonula Occludens-1 (ZO-1) and Claudin-5 (CLDN5) and used for automated immunofluorescence imaging. Finally, the same monolayers were used for single molecule localization microscopy (SMLM) of ZO-1 and CLDN5 at the nanoscale for spatial clustering analysis. The TER increased and the paracellular dextran flux decreased after the application of AlaGln and these functional changes of the monolayer were mediated by an increase in the ZO-1 and CLDN5 abundance in the cell-cell interface. At the nanoscale level, the functional and protein abundance data were accompanied by non-random increased clustering of CLDN5. Our experimental workflow provides multiple data from a single monolayer and has wide applicability in the setting of paracellular studies in endothelia and epithelia.


Asunto(s)
Permeabilidad Capilar , Uniones Estrechas/metabolismo , Claudina-5/metabolismo , Dextranos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteína de la Zonula Occludens-1/metabolismo
18.
Cells ; 10(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201566

RESUMEN

Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.


Asunto(s)
Heterocromatina/metabolismo , Modelos Biológicos , Actomiosina/metabolismo , Animales , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Pollos , Momento de Replicación del ADN , Desarrollo Embrionario/genética , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos/genética , Ratas
19.
Adv Mater ; 33(26): e2101328, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991010

RESUMEN

With the development of the internet-of-things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service-life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e-waste). Fueled by the growing e-waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy-storage technologies such as lithium-ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g-1 active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high-performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e-textiles, and healthcare.

20.
Harefuah ; 160(4): 221-225, 2021 Apr.
Artículo en Hebreo | MEDLINE | ID: mdl-33899370

RESUMEN

INTRODUCTION: This is a case study of a thirty-five year old woman with a past medical history of anxiety disorder and hypertension which has been elevated up to 180/100 mmHg during the previous year. She had no cardiovascular risk factors or family history of hypertension. Her high blood pressure was initially attributed to emotional stress, however, she was later referred for additional evaluation for secondary causes of hypertension. Her lab test results demonstrated significantly elevated plasma aldosterone levels and suppressed renin levels. A computed tomography scan demonstrated a left adrenal mass consistent with adrenal adenoma, with a normal adrenal gland on the right. Immediately after left adrenalectomy, plasma aldosterone level normalized and blood pressure was controlled with only minimal pharmacotherapy. Approximately 10 days post-surgery, her blood pressure values were measured in a range of 125/90 and anxiety significantly improved, under treatment only with 12.5mg Atenolol.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Adenoma Corticosuprarrenal , Hiperaldosteronismo , Hipertensión , Neoplasias de las Glándulas Suprarrenales/cirugía , Adrenalectomía , Adenoma Corticosuprarrenal/cirugía , Adulto , Aldosterona , Trastornos de Ansiedad , Femenino , Humanos , Hiperaldosteronismo/complicaciones , Hiperaldosteronismo/diagnóstico , Hipertensión/diagnóstico , Hipertensión/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA