Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Neurosci ; 44(13)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38050126

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Microtubules , Neurons , Animals , Mice , Katanin/genetics , Katanin/metabolism , Microtubules/metabolism , Neurons/physiology , Neurogenesis , Neuronal Plasticity
2.
Front Cell Dev Biol ; 10: 987691, 2022.
Article En | MEDLINE | ID: mdl-36518539

Hearing impairment is one of the most common disorders with a global burden and increasing prevalence in an ever-aging population. Previous research has largely focused on peripheral sensory perception, while the brain circuits of auditory processing and integration remain poorly understood. Mutations in the rdx gene, encoding the F-actin binding protein radixin (Rdx), can induce hearing loss in human patients and homozygous depletion of Rdx causes deafness in mice. However, the precise physiological function of Rdx in hearing and auditory information processing is still ill-defined. Here, we investigated consequences of rdx monoallelic loss in the mouse. Unlike the homozygous (-/-) rdx knockout, which is characterized by the degeneration of actin-based stereocilia and subsequent hearing loss, our analysis of heterozygous (+/-) mutants has revealed a different phenotype. Specifically, monoallelic loss of rdx potentiated the startle reflex in response to acoustic stimulation of increasing intensities, suggesting a gain of function relative to wildtype littermates. The monoallelic loss of the rdx gene also facilitated pre-pulse inhibition of the acoustic startle reflex induced by weak auditory pre-pulse stimuli, indicating a modification to the circuit underlying sensorimotor gating of auditory input. However, the auditory brainstem response (ABR)-based hearing thresholds revealed a mild impairment in peripheral sound perception in rdx (+/-) mice, suggesting minor aberration of stereocilia structural integrity. Taken together, our data suggest a critical role of Rdx in the top-down processing and/or integration of auditory signals, and therefore a novel perspective to uncover further Rdx-mediated mechanisms in central auditory information processing.

3.
Cell Mol Life Sci ; 79(11): 575, 2022 Oct 29.
Article En | MEDLINE | ID: mdl-36309617

Microtubules are dynamic polymers of α/ß-tubulin. They regulate cell structure, cell division, cell migration, and intracellular transport. However, functional contributions of individual tubulin isotypes are incompletely understood. The neuron-specific ß-tubulin Tubb3 displays highest expression around early postnatal periods characterized by exuberant synaptogenesis. Although Tubb3 mutations are associated with neuronal disease, including abnormal inhibitory transmission and seizure activity in patients, molecular consequences of altered Tubb3 levels are largely unknown. Likewise, it is unclear whether neuronal activity triggers Tubb3 expression changes in neurons. In this study, we initially asked whether chemical protocols to induce long-term potentiation (cLTP) affect microtubule growth and the expression of individual tubulin isotypes. We found that growing microtubules and Tubb3 expression are sensitive to changes in neuronal activity and asked for consequences of Tubb3 downregulation in neurons. Our data revealed that reduced Tubb3 levels accelerated microtubule growth in axons and dendrites. Remarkably, Tubb3 knockdown induced a specific upregulation of Tubb4 gene expression, without changing other tubulin isotypes. We further found that Tubb3 downregulation reduces tubulin polyglutamylation, increases KIF5C motility and boosts the transport of its synaptic cargo N-Cadherin, which is known to regulate synaptogenesis and long-term potentiation. Due to the large number of tubulin isotypes, we developed and applied a computational model based on a Monte Carlo simulation to understand consequences of tubulin expression changes in silico. Together, our data suggest a feedback mechanism with neuronal activity regulating tubulin expression and consequently microtubule dynamics underlying the delivery of synaptic cargoes.


Kinesins , Tubulin , Humans , Tubulin/genetics , Tubulin/metabolism , Kinesins/genetics , Microtubules/metabolism , Neurons/metabolism , Axons/metabolism
4.
Dev Neurobiol ; 81(3): 333-350, 2021 04.
Article En | MEDLINE | ID: mdl-32293117

Alpha- and beta-tubulin dimers polymerize into protofilaments that associate laterally to constitute a hollow tube, the microtubule. A dynamic network of interlinking filaments forms the microtubule cytoskeleton, which maintains the structure of cells and is key to various cellular processes including cell division, cell migration, and intracellular transport. Individual microtubules have an identity that depends on the differential integration of specific alpha- and beta-tubulin isotypes and is further specified by a variety of posttranslational modifications (PTMs). It is barely understood to which extent neighboring microtubules differ in their tubulin composition or whether specific tubulin isotypes cluster along the polymer. Furthermore, our knowledge about the spatio-temporal expression patterns of tubulin isotypes is limited, not at least due to the lack of antibodies or antibody cross-reactivities. Here, we asked which alpha- and beta-tubulin mRNAs and proteins are expressed in developing hippocampal neuron cultures and ex vivo brain tissue lysates. Using heterologous expression of GFP-tubulin fusion proteins, we systematically tested antibody-specificities against various tubulin isotypes. Our data provide quantitative information about tubulin expression levels in the mouse brain and classify tubulin isotypes during pre- and postnatal development.


Microtubules , Tubulin , Animals , Brain/metabolism , Cytoskeleton/metabolism , Mice , Microtubules/metabolism , RNA, Messenger/metabolism , Tubulin/metabolism
5.
PLoS Biol ; 18(8): e3000820, 2020 08.
Article En | MEDLINE | ID: mdl-32866173

Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition.


Glutamic Acid/metabolism , Kinesins/metabolism , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory, Short-Term , Neurons/metabolism , Spastin/deficiency , Tubulin/metabolism , Action Potentials , Animals , Cell Membrane/metabolism , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Excitatory Postsynaptic Potentials , Hippocampus/pathology , Hippocampus/physiopathology , Mice, Knockout , Microtubules/metabolism , Microtubules/ultrastructure , Motor Activity , Neurons/pathology , Neurons/ultrastructure , Protein Transport , Spastin/metabolism , Synapses/metabolism , Synapses/ultrastructure , Synaptic Vesicles/metabolism
6.
Nat Commun ; 10(1): 5448, 2019 11 29.
Article En | MEDLINE | ID: mdl-31784514

Amphisomes are organelles of the autophagy pathway that result from the fusion of autophagosomes with late endosomes. While biogenesis of autophagosomes and late endosomes occurs continuously at axon terminals, non-degradative roles of autophagy at boutons are barely described. Here, we show that in neurons BDNF/TrkB traffick in amphisomes that signal locally at presynaptic boutons during retrograde transport to the soma. This is orchestrated by the Rap GTPase-activating (RapGAP) protein SIPA1L2, which connects TrkB amphisomes to a dynein motor. The autophagosomal protein LC3 regulates RapGAP activity of SIPA1L2 and controls retrograde trafficking and local signaling of TrkB. Following induction of presynaptic plasticity, amphisomes dissociate from dynein at boutons enabling local signaling and promoting transmitter release. Accordingly, sipa1l2 knockout mice show impaired BDNF-dependent presynaptic plasticity. Taken together, the data suggest that in hippocampal neurons, TrkB-signaling endosomes are in fact amphisomes that during retrograde transport have local signaling capacity in the context of presynaptic plasticity.


Autophagosomes/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Endosomes/metabolism , GTPase-Activating Proteins/metabolism , Membrane Glycoproteins/metabolism , Microtubule-Associated Proteins/metabolism , Neuronal Plasticity/genetics , Neurons/metabolism , Presynaptic Terminals/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Axonal Transport , Axons/metabolism , Dyneins/metabolism , GTPase-Activating Proteins/genetics , Hippocampus , Mice , Mice, Knockout , Protein Transport
8.
Sci Rep ; 9(1): 15940, 2019 11 04.
Article En | MEDLINE | ID: mdl-31685876

Microtubule severing regulates cytoskeletal rearrangement underlying various cellular functions. Katanin, a heterodimer, consisting of catalytic (p60) and regulatory (p80) subunits severs dynamic microtubules to modulate several stages of cell division. The role of p60 katanin in the mammalian brain with respect to embryonic and adult neurogenesis is poorly understood. Here, we generated a Katna1 knockout mouse and found that consistent with a critical role of katanin in mitosis, constitutive homozygous Katna1 depletion is lethal. Katanin p60 haploinsufficiency induced an accumulation of neuronal progenitors in the subventricular zone during corticogenesis, and impaired their proliferation in the adult hippocampus dentate gyrus (DG) subgranular zone. This did not compromise DG plasticity or spatial and contextual learning and memory tasks employed in our study, consistent with the interpretation that adult neurogenesis may be associated with selective forms of hippocampal-dependent cognitive processes. Our data identify a critical role for the microtubule-severing protein katanin p60 in regulating neuronal progenitor proliferation in vivo during embryonic development and adult neurogenesis.


Cell Differentiation , Katanin/genetics , Microtubules/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Age Factors , Alleles , Animals , Cell Differentiation/genetics , Cell Proliferation , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Dentate Gyrus/embryology , Dentate Gyrus/metabolism , Gene Targeting , Haploinsufficiency , Katanin/metabolism , Learning , Memory , Mice , Mice, Knockout , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Organogenesis , Phenotype
9.
EMBO J ; 37(23)2018 12 03.
Article En | MEDLINE | ID: mdl-30420556

Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.


Neurodegenerative Diseases/metabolism , Peptides/metabolism , Protein Processing, Post-Translational , Purkinje Cells/metabolism , Tubulin/metabolism , Animals , Biological Transport, Active/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Peptide Synthases/genetics , Peptide Synthases/metabolism , Peptides/genetics , Purkinje Cells/pathology , Tubulin/genetics
10.
Hum Mutat ; 39(12): 1901-1915, 2018 12.
Article En | MEDLINE | ID: mdl-30079973

Mutations in TUBB4A have been identified to cause a wide phenotypic spectrum of diseases ranging from hereditary generalized dystonia with whispering dysphonia (DYT-TUBB4A) and hereditary spastic paraplegia (HSP) to leukodystrophy hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). TUBB4A encodes the brain-specific ß-tubulin isotype, ß-tubulin 4A. To elucidate the pathogenic mechanisms conferred by TUBB4A mutations leading to the different phenotypes, we functionally characterized three pathogenic TUBB4A variants (c.4C>G,p.R2G; c.745G>A,p.D249N; c.811G>A, p.A271T) as representatives of the mutational and disease spectrum) in human neuroblastoma cells and human induced pluripotent stem cell (iPSC)-derived neurons. We showed that mRNA stability was not affected by any of the TUBB4A variants. Although two mutations (p.R2G and p.D249N) are located at the α/ß-tubulin interdimer interface, we confirmed incorporation of all TUBB4A mutants into the microtubule network. However, we showed that the mutations p.D249N and p.A271T interfered with motor protein binding to microtubules and impaired neurite outgrowth and microtubule dynamics. Finally, TUBB4A mutations, as well as heterozygous knockout of TUBB4A, disrupted mitochondrial transport in iPSC-derived neurons. Taken together, our findings suggest that functional impairment of microtubule-associated transport is a shared pathogenic mechanism by which the TUBB4A mutations studied here cause a spectrum of diseases.


Kinesins/metabolism , Mitochondria/metabolism , Mutation , Neuroblastoma/genetics , Neurons/cytology , Tubulin/genetics , CRISPR-Cas Systems , Cell Culture Techniques , Cell Line, Tumor , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Microtubules/metabolism , Neuroblastoma/metabolism , Neuronal Outgrowth , Neurons/metabolism , Phenotype , RNA Stability , RNA, Messenger/chemistry , Tubulin/chemistry , Tubulin/metabolism
11.
EMBO Rep ; 18(11): 2015-2029, 2017 11.
Article En | MEDLINE | ID: mdl-28893864

Lipopolysaccharide-responsive beige-like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain-containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein-truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.


Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Sodium-Hydrogen Exchangers/genetics , Stereocilia/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adult , Animals , Cytoskeletal Proteins/metabolism , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Gene Expression Regulation, Developmental , Hair Cells, Auditory/pathology , Hearing/physiology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Phosphoproteins/metabolism , Protein Domains , Signal Transduction , Sodium-Hydrogen Exchangers/metabolism , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Stereocilia/pathology
12.
Neuron ; 92(4): 845-856, 2016 Nov 23.
Article En | MEDLINE | ID: mdl-27773584

Developmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-specific microtubule severing, which results in local disassembly of the microtubule cytoskeleton and loss of axonal transport in branches that will subsequently dismantle. Accordingly, pharmacological microtubule stabilization delays neuromuscular synapse elimination. This branch-specific disassembly of the cytoskeleton appears to be mediated by the microtubule-severing enzyme spastin, which is dysfunctional in some forms of upper motor neuron disease. Our results demonstrate a physiological role for a neurodegeneration-associated modulator of the cytoskeleton, reveal unexpected cell biology of branch-specific axon plasticity and underscore the mechanistic similarities of axon loss in development and disease.


Adenosine Triphosphatases/metabolism , Axonal Transport , Microtubules/metabolism , Neuromuscular Junction/metabolism , Neuronal Plasticity , Adenosine Triphosphatases/genetics , Animals , Cytoskeleton/metabolism , Mice , Mice, Knockout , Motor Neuron Disease/metabolism , Spastin
13.
Nat Commun ; 6: 6872, 2015 Apr 20.
Article En | MEDLINE | ID: mdl-25891999

Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs.


Cytoskeletal Proteins/metabolism , Learning/physiology , Membrane Proteins/metabolism , Receptors, GABA-A/metabolism , Synapses/physiology , Animals , Cytoskeletal Proteins/genetics , Electrophysiological Phenomena , Gene Expression Regulation/physiology , Hippocampus/cytology , Hippocampus/physiology , Membrane Proteins/genetics , Mice , Mice, Knockout , Receptors, GABA-A/genetics
14.
Nat Commun ; 5: 3921, 2014 Jun 04.
Article En | MEDLINE | ID: mdl-24894704

Postsynaptic long-term potentiation of inhibition (iLTP) can rely on increased GABAA receptors (GABA(A)Rs) at synapses by promoted exocytosis. However, the molecular mechanisms that enhance the clustering of postsynaptic GABA(A)Rs during iLTP remain obscure. Here we demonstrate that during chemically induced iLTP (chem-iLTP), GABA(A)Rs are immobilized and confined at synapses, as revealed by single-particle tracking of individual GABA(A)Rs in cultured hippocampal neurons. Chem-iLTP expression requires synaptic recruitment of the scaffold protein gephyrin from extrasynaptic areas, which in turn is promoted by CaMKII-dependent phosphorylation of GABA(A)R-ß3-Ser(383). Impairment of gephyrin assembly prevents chem-iLTP and, in parallel, blocks the accumulation and immobilization of GABA(A)Rs at synapses. Importantly, an increase of gephyrin and GABA(A)R similar to those observed during chem-iLTP in cultures were found in the rat visual cortex following an experience-dependent plasticity protocol that potentiates inhibitory transmission in vivo. Thus, phospho-GABA(A)R-ß3-dependent accumulation of gephyrin at synapses and receptor immobilization are crucial for iLTP expression and are likely to modulate network excitability.


Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Carrier Proteins/metabolism , Long-Term Potentiation/physiology , Membrane Proteins/metabolism , Neurons/metabolism , Receptors, GABA-A/metabolism , Visual Cortex/metabolism , Animals , Cells, Cultured , Hippocampus/cytology , Mice , Neural Inhibition/physiology , Phosphorylation , Rats , Receptors, N-Methyl-D-Aspartate
15.
Neuron ; 70(1): 66-81, 2011 Apr 14.
Article En | MEDLINE | ID: mdl-21482357

Intracellular transport regulates protein turnover including endocytosis. Because of the spatial segregation of F-actin and microtubules, internalized cargo vesicles need to employ myosin and dynein motors to traverse both cytoskeletal compartments. Factors specifying cargo delivery across both tracks remain unknown. We identified muskelin to interconnect retrograde F-actin- and microtubule-dependent GABA(A) receptor (GABA(A)R) trafficking. GABA(A)Rs regulate synaptic transmission, plasticity, and network oscillations. GABA(A)R α1 and muskelin interact directly, undergo neuronal cotransport, and associate with myosin VI or dynein motor complexes in subsequent steps of GABA(A)R endocytosis. Inhibition of either transport route selectively interferes with receptor internalization or degradation. Newly generated muskelin KO mice display depletion of both transport steps and a high-frequency ripple oscillation phenotype. A diluted coat color of muskelin KOs further suggests muskelin transport functions beyond neurons. Our data suggest the concept that specific trafficking factors help cargoes to traverse both F-actin and microtubule compartments, thereby regulating their fate.


Actin Cytoskeleton/metabolism , Cell Adhesion Molecules/physiology , Intracellular Signaling Peptides and Proteins/physiology , Microtubules/metabolism , Neurons/metabolism , Receptors, GABA-A/metabolism , Animals , HEK293 Cells , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Protein Transport/physiology
16.
Proc Natl Acad Sci U S A ; 106(21): 8731-6, 2009 May 26.
Article En | MEDLINE | ID: mdl-19439658

Synaptic plasticity, the ability of synapses to change in strength, requires alterations in synaptic molecule compositions over time, and synapses undergo selective modifications on stimulation. Molecular motors operate in sorting/transport of neuronal proteins; however, the targeting mechanisms that guide and direct cargo delivery remain elusive. We addressed the impact of synaptic transmission on the regulation of intracellular microtubule (MT)-based transport. We show that increased neuronal activity, as induced through GlyR activity blockade, facilitates tubulin polyglutamylation, a posttranslational modification thought to represent a molecular traffic sign for transport. Also, GlyR activity blockade alters the binding of the MT-associated protein MAP2 to MTs. By using the kinesin (KIF5) and the postsynaptic protein gephyrin as models, we show that such changes of MT tracks are accompanied by reduced motor protein mobility and cargo delivery into neurites. Notably, the observed neurite targeting deficits are prevented on functional depletion or gene expression knockdown of neuronal polyglutamylase. Our data suggest a previously undescribed concept of synaptic transmission regulating MT-dependent cargo delivery.


Microtubules/metabolism , Synapses/metabolism , Biological Transport , Carrier Proteins/metabolism , Cells, Cultured , Kinesins/metabolism , Membrane Proteins/metabolism , Polyglutamic Acid/metabolism , Tubulin/metabolism
...