Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628914

RESUMEN

Mountainous grasslands in South America, characterized by their high diversity, provide a wide range of contributions to people, including water regulation, soil erosion prevention, livestock feed provision, and preservation of cultural heritage. Prior research has highlighted the significant role of grazing in shaping the diversity and productivity of grassland ecosystems, especially in highly productive, eutrophic systems. In such environments, grazing has been demonstrated to restore grassland plant diversity by reducing primary productivity. However, it remains unclear whether these findings are applicable to South American mountainous grasslands, where plants are adapted to different environmental conditions. To address this uncertainty, we conducted a meta-analysis of experiments excluding livestock grazing to assess its impact on plant diversity and productivity across mountainous grasslands in South America. In alignment with studies in temperate grasslands, our findings indicated that herbivore exclusion resulted in increased aboveground biomass but reduced species richness and Shannon diversity. The effects of grazing exclusion became more pronounced with longer durations of exclusion; nevertheless, they remained resilient to various climatic conditions, including mean annual precipitation and mean annual temperature, as well as the evolutionary history of grazing. In contrast to results observed in temperate grasslands, the reduction in species richness due to herbivore exclusion was not associated with increased aboveground biomass. This suggests that the processes governing (sub)tropical grassland plant diversity may differ from those in temperate grasslands. Consequently, further research is necessary to better understand the specific factors influencing plant diversity and productivity in South American montane grasslands and to elucidate the ecological implications of herbivore exclusion in these unique ecosystems.

2.
Commun Biol ; 7(1): 309, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467761

RESUMEN

Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.


Asunto(s)
Ecosistema , Pradera , Nitrógeno , Biodiversidad , Plantas
3.
Trends Ecol Evol ; 39(7): 689-700, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503639

RESUMEN

The global biodiversity crisis has stimulated decades of research on three themes: species coexistence, biodiversity-ecosystem functioning relationships (BEF), and biodiversity-ecosystem functional stability relationships (BEFS). However, studies on these themes are largely independent, creating barriers to an integrative understanding of the causes and consequences of biodiversity. Here we review recent progress towards mechanistic integration of coexistence, BEF, and BEFS. Mechanisms underlying the three themes can be linked in various ways, potentially creating either positive or negative relationships between them. That said, we generally expect positive associations between coexistence and BEF, and between BEF and BEFS. Our synthesis represents an initial step towards integrating causes and consequences of biodiversity; future developments should include more mechanistic approaches and broader ecological contexts.


Asunto(s)
Biodiversidad , Ecosistema , Conservación de los Recursos Naturales , Animales
4.
Glob Chang Biol ; 30(1): e17155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273528

RESUMEN

There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.


Asunto(s)
Pradera , Herbivoria , Animales , Biomasa , Ganado , Ecosistema
5.
Commun Biol ; 6(1): 1220, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040868

RESUMEN

Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Suelo/química , Microbiología del Suelo , Biodiversidad
6.
Front Plant Sci ; 14: 1301461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053765

RESUMEN

Background and aims: Nitrogen (N) enrichment usually weakens the stabilizing effect of biodiversity on productivity. However, previous studies focused on plant species richness and thus largely ignored the potential contributions of plant functional traits to stability, even though evidence is increasing that functional traits are stronger predictors than species richness of ecosystem functions. Methods: We conducted a common garden experiment manipulating plant species richness and N addition levels to quantify effects of N addition on relations between species richness and functional trait identity and diversity underpinning the 'fast-slow' economics spectrum and community stability. Results: Nitrogen addition had a minor effect on community stability but increased the positive effects of species richness on community stability. Increasing community stability was found in the species-rich communities dominated by fast species due to substantially increasing temporal mean productivity relative to its standard deviation. Furthermore, enhancement in 'fast-slow' functional diversity in species-rich communities dominated by fast species under N addition increased species asynchrony, resulting in a robust biodiversity-stability relationship under N addition the artificial grassland communities. Conclusion: The findings demonstrate mechanistic links between plant species richness, 'fast-slow' functional traits, and community stability under N addition, suggesting that dynamics of biodiversity-stability relations under global changes are the results of species-specific responses of 'fast-slow' traits on the plant economics spectrum.

7.
Nat Commun ; 14(1): 6375, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821444

RESUMEN

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.


Asunto(s)
Biodiversidad , Pradera , Biomasa , Eutrofización , Estaciones del Año , Ecosistema
8.
Nat Commun ; 14(1): 6624, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857640

RESUMEN

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Asunto(s)
Ecosistema , Suelo , Carbono , Biodiversidad , Biomasa , Plantas , Nitrógeno
9.
Nat Commun ; 14(1): 5040, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598205

RESUMEN

Grazing by domestic herbivores is the most widespread land use on the planet, and also a major global change driver in grasslands. Yet, experimental evidence on the long-term impacts of livestock grazing on biodiversity and function is largely lacking. Here, we report results from a network of 10 experimental sites from paired grazed and ungrazed grasslands across an aridity gradient, including some of the largest remaining native grasslands on the planet. We show that aridity partly explains the responses of biodiversity and multifunctionality to long-term livestock grazing. Grazing greatly reduced biodiversity and multifunctionality in steppes with higher aridity, while had no effects in steppes with relatively lower aridity. Moreover, we found that long-term grazing further changed the capacity of above- and below-ground biodiversity to explain multifunctionality. Thus, while plant diversity was positively correlated with multifunctionality across grasslands with excluded livestock, soil biodiversity was positively correlated with multifunctionality across grazed grasslands. Together, our cross-site experiment reveals that the impacts of long-term grazing on biodiversity and function depend on aridity levels, with the more arid sites experiencing more negative impacts on biodiversity and ecosystem multifunctionality. We also highlight the fundamental importance of conserving soil biodiversity for protecting multifunctionality in widespread grazed grasslands.


Asunto(s)
Ecosistema , Pradera , Animales , Biodiversidad , Herbivoria , Ganado , Suelo
10.
Sci Total Environ ; 898: 165651, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37474043

RESUMEN

Experiments manipulating a single global change factor (GCF) have provided increasing evidence that global environmental changes, such as eutrophication, precipitation change, and warming, generally affect the temporal stability of grassland productivity. Whether the combined impact of global changes on grassland stability increases as the number of global changes increases remains unknown. Using a meta-analysis of 673 observations from 143 sites worldwide, including 7 different GCFs, we examined the responses of grassland temporal stability of productivity to increasing numbers of GCFs. We quantified the links between community stability, biotic factors (i.e., species richness, species stability, and species asynchrony), and abiotic factors (i.e., aridity index, experimental duration, and experimental intensity). Although inconsistent responses of community stability were found with different GCF types and combinations, when integrating existing GCFs studies and ignoring the identity of GCFs, we found a general decrease in community stability as the number of GCFs increases, but the main drivers of community stability varied with the numbers of GCFs. Specifically, one GCF mainly reduced species stability through species richness and thus weakened community stability. Two GCFs weakened community stability via independently weakening species stability and species asynchrony. Three GCFs reduce community stability mainly via independently weakening species asynchrony. Moreover, for single factor, the impact of GCFs on community stability was weaker under dryer conditions, but stronger when two or three factors were manipulated. In addition, the negative effect of GCFs on community stability was weaker with increasing experimental duration. Our study reveals that reduced community stability with increasing numbers of GCFs is caused by a shift from reduced species stability to reduced species asynchrony, suggesting that persistent global changes will destabilize grassland productivity by reducing asynchronous dynamics among species in response to natural environmental fluctuations.

12.
Nat Commun ; 14(1): 2607, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147282

RESUMEN

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Causalidad , Biomasa
13.
Front Plant Sci ; 14: 1142786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113592

RESUMEN

Phenology and productivity are important functional indicators of grassland ecosystems. However, our understanding of how intra-annual precipitation patterns affect plant phenology and productivity in grasslands is still limited. Here, we conducted a two-year precipitation manipulation experiment to explore the responses of plant phenology and productivity to intra-annual precipitation patterns at the community and dominant species levels in a temperate grassland. We found that increased early growing season precipitation enhanced the above-ground biomass of the dominant rhizome grass, Leymus chinensis, by advancing its flowering date, while increased late growing season precipitation increased the above-ground biomass of the dominant bunchgrass, Stipa grandis, by delaying senescence. The complementary effects in phenology and biomass of the dominant species, L. chinensis and S. grandis, maintained stable dynamics of the community above-ground biomass under intra-annual precipitation pattern variations. Our results highlight the critical role that intra-annual precipitation and soil moisture patterns play in the phenology of temperate grasslands. By understanding the response of phenology to intra-annual precipitation patterns, we can more accurately predict the productivity of temperate grasslands under future climate change.

14.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002217

RESUMEN

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Reproducibilidad de los Resultados , Plantas
15.
Glob Chang Biol ; 29(8): 2242-2255, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36630490

RESUMEN

Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while ß diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Plantas , Cambio Climático
16.
Glob Chang Biol ; 29(2): 296-307, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36281756

RESUMEN

Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.


Asunto(s)
Ecosistema , Suelo , Biodiversidad , Biomasa
17.
Natl Sci Rev ; 9(12): nwac165, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36519072

RESUMEN

Resources can affect plant productivity and biodiversity simultaneously and thus are key drivers of their relationships in addition to plant-plant interactions. However, most previous studies only focused on a single resource while neglecting the nature of resource multidimensionality. Here we integrated four essential resources for plant growth into a single metric of resource diversity (RD) to investigate its effects on the productivity-biodiversity relationship (PBR) across Chinese grasslands. Results showed that habitats differing in RD have different PBRs-positive in low-resource habitats, but neutral in medium- and high-resource ones-while collectively, a weak positive PBR was observed. However, when excluding direct effects of RD on productivity and biodiversity, the PBR in high-resource habitats became negative, which leads to a unimodal instead of a positive PBR along the RD gradient. By integrating resource effects and changing plant-plant interactions into a unified framework with the RD gradient, our work contributes to uncovering underlying mechanisms for inconsistent PBRs at large scales.

18.
Nature ; 611(7935): 301-305, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323777

RESUMEN

Enrichment of nutrients and loss of herbivores are assumed to cause a loss of plant diversity in grassland ecosystems because they increase plant cover, which leads to a decrease of light in the understory1-3. Empirical tests of the role of competition for light in natural systems are based on indirect evidence, and have been a topic of debate for the last 40 years. Here we show that experimentally restoring light to understory plants in a natural grassland mitigates the loss of plant diversity that is caused by either nutrient enrichment or the absence of mammalian herbivores. The initial effect of light addition on restoring diversity under fertilization was transitory and outweighed by the greater effect of herbivory on light levels, indicating that herbivory is a major factor that controls diversity, partly through light. Our results provide direct experimental evidence, in a natural system, that competition for light is a key mechanism that contributes to the loss of biodiversity after cessation of mammalian herbivory. Our findings also show that the effects of herbivores can outpace the effects of fertilization on competition for light. Management practices that target maintaining grazing by native or domestic herbivores could therefore have applications in protecting biodiversity in grassland ecosystems, because they alleviate competition for light in the understory.


Asunto(s)
Biodiversidad , Herbivoria , Luz , Plantas , Animales , Pradera , Mamíferos/fisiología , Nutrientes/metabolismo , Plantas/clasificación , Plantas/metabolismo , Plantas/efectos de la radiación , Fertilizantes
19.
PLoS One ; 17(11): e0276789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36346799

RESUMEN

Altered climate, nutrient enrichment and changes in grazing patterns are important environmental and biotic changes in temperate grassland systems. Singly and in concert these factors can influence plant performance and traits, with consequences for species competitive ability, and thus for species coexistence, community composition and diversity. However, we lack experimental tests of the mechanisms, such as competition for light, driving plant performance and traits under nutrient enrichment, grazer exclusion and future climate. We used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant responses to interactions among climate, nutrients, grazing and light. We recorded transplant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light addition via LED-lamps. Future climate and fertilization together increased transplant height but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions when protected from grazers. In general, grazing had a strong negative effect on all measured variables regardless of added nutrients and light. Our results show that competition for light may lead to taller individuals and interacts with climate and nutrients to affect traits related to resource-use. Furthermore, our study suggests grazing may counteract the benefits of future climate on the biomass of species such as Silene latifolia. Consequently, grazers and light may be important modulators of individual plant performance and traits under nutrient enrichment and future climatic conditions.


Asunto(s)
Silene , Humanos , Biomasa , Plantas , Nutrientes , Nitrógeno , Pradera , Ecosistema
20.
Front Plant Sci ; 13: 1014049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388500

RESUMEN

The stability of grassland communities informs us about the ability of grasslands to provide reliable services despite environmental fluctuations. There is large evidence that higher plant diversity and asynchrony among species stabilizes grassland primary productivity against interannual climate variability. Whether biodiversity and asynchrony among species and functional groups stabilize grassland productivity against seasonal climate variability remains unknown. Here, using 29-year monitoring of a temperate grassland, we found lower community temporal stability with higher seasonal climate variability (temperature and precipitation). This was due to a combination of processes including related species richness, species asynchrony, functional group asynchrony and dominant species stability. Among those processes, functional group asynchrony had the strongest contribution to community compensatory dynamics and community stability. Based on a long-term study spanning 29 years, our results indicate that biodiversity and compensatory dynamics a key for the stable provision of grassland function against increasing seasonal climate variability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA