Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(10): 6238-6251, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28453785

RESUMEN

Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5΄-phosphate/3΄-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4-LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP-XRCC4-LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation and that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexible multi-state complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4-LigIV. A mutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4-LigIV that regulate PNKP recruitment and activity within NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades/fisiología , ADN Ligasa (ATP)/fisiología , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Dominio Catalítico , Daño del ADN , ADN Ligasa (ATP)/química , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/deficiencia , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Deuterio/metabolismo , Discapacidades del Desarrollo/genética , Humanos , Espectrometría de Masas , Microcefalia/genética , Modelos Moleculares , Complejos Multiproteicos , Mutación Missense , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mutación Puntual , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Convulsiones/genética , Síndrome , Difracción de Rayos X
2.
Biochemistry ; 56(12): 1737-1745, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28276686

RESUMEN

Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/química , ADN/química , Fosfatos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Animales , Sitios de Unión , Dominio Catalítico , Clonación Molecular , ADN/genética , ADN/metabolismo , Daño del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ratones , Simulación del Acoplamiento Molecular , Mutación , Fosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 108(52): 21022-7, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22171004

RESUMEN

Polynucleotide kinase/phosphatase (PNKP) is a critical mammalian DNA repair enzyme that generates 5'-phosphate and 3'-hydroxyl groups at damaged DNA termini that are required for subsequent processing by DNA ligases and polymerases. The PNKP phosphatase domain recognizes 3'-phosphate termini within DNA nicks, gaps, or at double- or single-strand breaks. Here we present a mechanistic rationale for the recognition of damaged DNA termini by the PNKP phosphatase domain. The crystal structures of PNKP bound to single-stranded DNA substrates reveals a narrow active site cleft that accommodates a single-stranded substrate in a sequence-independent manner. Biochemical studies suggest that the terminal base pairs of double-stranded substrates near the 3'-phosphate are destabilized by PNKP to allow substrate access to the active site. A positively charged surface distinct from the active site specifically facilitates interactions with double-stranded substrates, providing a complex DNA binding surface that enables the recognition of diverse substrates.


Asunto(s)
Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , ADN/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Conformación Proteica , Cristalización , Cristalografía por Rayos X , Polarización de Fluorescencia , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...