Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
Front Plant Sci ; 15: 1362460, 2024.
Article En | MEDLINE | ID: mdl-38434440

Environmental abiotic constraints are known to reduce plant growth. This effect is largely due to the inhibition of cell division in the leaf and root meristems caused by perturbations of the cell cycle machinery. Progression of the cell cycle is regulated by CDK kinases whose phosphorylation activities are dependent on cyclin proteins. Recent results have emphasized the role of inhibitors of the cyclin-CDK complexes in the impairment of the cell cycle and the resulting growth inhibition under environmental constraints. Those cyclin-CDK inhibitors (CKIs) include the KRP and SIAMESE families of proteins. This review presents the current knowledge on how CKIs respond to environmental changes and on the role played by one subclass of CKIs, the SIAMESE RELATED proteins (SMRs), in the tolerance of plants to abiotic stresses. The SMRs could play a central role in adjusting the balance between growth and stress defenses in plants exposed to environmental stresses.

2.
PNAS Nexus ; 2(11): pgad353, 2023 Nov.
Article En | MEDLINE | ID: mdl-37954155

New regulatory functions in plant development and environmental stress responses have recently emerged for a number of apocarotenoids produced by enzymatic or nonenzymatic oxidation of carotenoids. ß-Cyclocitric acid (ß-CCA) is one such compound derived from ß-carotene, which triggers defense mechanisms leading to a marked enhancement of plant tolerance to drought stress. We show here that this response is associated with an inhibition of root growth affecting both root cell elongation and division. Remarkably, ß-CCA selectively induced cell cycle inhibitors of the SIAMESE-RELATED (SMR) family, especially SMR5, in root tip cells. Overexpression of the SMR5 gene in Arabidopsis induced molecular and physiological changes that mimicked in large part the effects of ß-CCA. In particular, the SMR5 overexpressors exhibited an inhibition of root development and a marked increase in drought tolerance which is not related to stomatal closure. SMR5 up-regulation induced changes in gene expression that strongly overlapped with the ß-CCA-induced transcriptomic changes. Both ß-CCA and SMR5 led to a down-regulation of many cell cycle activators (cyclins, cyclin-dependent kinases) and a concomitant up-regulation of genes related to water deprivation, cellular detoxification, and biosynthesis of lipid biopolymers such as suberin and lignin. This was correlated with an accumulation of suberin lipid polyesters in the roots and a decrease in nonstomatal leaf transpiration. Taken together, our results identify the ß-CCA-inducible and drought-inducible SMR5 gene as a key component of a stress-signaling pathway that reorients root metabolism from growth to multiple defense mechanisms leading to drought tolerance.

3.
Plant J ; 116(5): 1293-1308, 2023 Dec.
Article En | MEDLINE | ID: mdl-37596909

With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.


Quercus , Quercus/metabolism , Antioxidants/metabolism , Seasons , Forests , Rain , Plant Leaves/metabolism , Trees/metabolism , Droughts , Water/metabolism
4.
Methods Mol Biol ; 2642: 111-128, 2023.
Article En | MEDLINE | ID: mdl-36944875

The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.


Oxidative Stress , Plants , Biomarkers , Lipid Peroxidation , Lipids , Oxidation-Reduction , Reactive Oxygen Species
5.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Article En | MEDLINE | ID: mdl-36740490

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Agriculture , Greenhouse Gases , Greenhouse Gases/analysis , Plants , Climate Change , Greenhouse Effect
6.
Biomolecules ; 12(12)2022 12 14.
Article En | MEDLINE | ID: mdl-36551307

UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.


Arabidopsis Proteins , Arabidopsis , Ultraviolet Rays/adverse effects , Arabidopsis/metabolism , Carotenoids/metabolism , Photosynthesis , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism
7.
Antioxidants (Basel) ; 11(7)2022 Jul 06.
Article En | MEDLINE | ID: mdl-35883824

Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.

8.
Methods Mol Biol ; 2526: 181-189, 2022.
Article En | MEDLINE | ID: mdl-35657520

Because they are highly unsaturated, plant lipids are sensitive to oxidation and constitute a primary target of reactive oxygen species. Therefore, quantification of lipid peroxidation provides a pertinent approach to evaluating oxidative stress in plants. Here, we describe a simple method to measure upstream products of the peroxidation of the major polyunsaturated fatty acids in plants, namely, linolenic acid (C18:3) and linoleic acid (C18:2). The method uses conventional HPLC with UV detection to measure hydroxy C18:3 and C18:2 after reduction of their respective hydroperoxides. The described experimental approach requires low amounts of plant material (a few hundred milligrams), monitors oxidation of both membrane and free fatty acids, and can discriminate between enzymatic and non-enzymatic lipid peroxidation.


Fatty Acids, Unsaturated , Fatty Acids , Chromatography, High Pressure Liquid , Lipid Peroxidation , Oxidation-Reduction , Reactive Oxygen Species
9.
Elife ; 112022 02 14.
Article En | MEDLINE | ID: mdl-35156611

Guanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants. Here, we demonstrate that ppGpp biosynthesis is necessary for acclimation to nitrogen starvation in Arabidopsis. We show that ppGpp is required for remodeling the photosynthetic electron transport chain to downregulate photosynthetic activity and for protection against oxidative stress. Furthermore, we demonstrate that ppGpp is required for coupling chloroplastic and nuclear gene expression during nitrogen starvation. Altogether, our work indicates that ppGpp is a pivotal regulator of chloroplast activity for stress acclimation in plants.


Arabidopsis/metabolism , Guanosine Pentaphosphate/metabolism , Guanosine Tetraphosphate/metabolism , Nitrogen/metabolism , Photosynthesis , Acclimatization , Arabidopsis/genetics , Chloroplasts/physiology , Cyanobacteria/cytology , Gene Expression Regulation, Plant , Plant Cells , Stress, Physiological
10.
Metab Eng ; 70: 166-180, 2022 03.
Article En | MEDLINE | ID: mdl-35031492

Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.


Solanum lycopersicum , Biomass , Biosynthetic Pathways/genetics , Carotenoids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Stress, Physiological
11.
Photosynth Res ; 152(1): 43-54, 2022 Apr.
Article En | MEDLINE | ID: mdl-35000138

Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m-2 s-1. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg-1 leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to ca. 400 pmol mg-1 in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts.


Arabidopsis , Plastoquinone , Acclimatization , Arabidopsis/metabolism , Electron Transport , Homeostasis , Light , Oxidation-Reduction , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Plastoquinone/metabolism , Thylakoids/metabolism
12.
Front Plant Sci ; 12: 624365, 2021.
Article En | MEDLINE | ID: mdl-33613605

Recently, we published a set of tobacco lines expressing the Daucus carota (carrot) DcLCYB1 gene with accelerated development, increased carotenoid content, photosynthetic efficiency, and yield. Because of this development, DcLCYB1 expression might be of general interest in crop species as a strategy to accelerate development and increase biomass production under field conditions. However, to follow this path, a better understanding of the molecular basis of this phenotype is essential. Here, we combine OMICs (RNAseq, proteomics, and metabolomics) approaches to advance our understanding of the broader effect of LCYB expression on the tobacco transcriptome and metabolism. Upon DcLCYB1 expression, the tobacco transcriptome (~2,000 genes), proteome (~700 proteins), and metabolome (26 metabolites) showed a high number of changes in the genes involved in metabolic processes related to cell wall, lipids, glycolysis, and secondary metabolism. Gene and protein networks revealed clusters of interacting genes and proteins mainly involved in ribosome and RNA metabolism and translation. In addition, abiotic stress-related genes and proteins were mainly upregulated in the transgenic lines. This was well in line with an enhanced stress (high light, salt, and H2O2) tolerance response in all the transgenic lines compared with the wild type. Altogether, our results show an extended and coordinated response beyond the chloroplast (nucleus and cytosol) at the transcriptome, proteome, and metabolome levels, supporting enhanced plant growth under normal and stress conditions. This final evidence completes the set of benefits conferred by the expression of the DcLCYB1 gene, making it a very promising bioengineering tool to generate super crops.

13.
Physiol Plant ; 171(2): 246-259, 2021 Feb.
Article En | MEDLINE | ID: mdl-33215689

Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid ß-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of ß-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity ß-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.


Lipid Peroxidation , Luminescence , Aldehydes , Diterpenes , Oxidative Stress , Plant Leaves , Reactive Oxygen Species
14.
Free Radic Biol Med ; 160: 894-907, 2020 11 20.
Article En | MEDLINE | ID: mdl-32931882

Tocochromanols (tocopherols, tocotrienols and plastochromanol-8), isoprenoid quinone (plastoquinone-9 and plastoquinol-9) and carotenoids (carotenes and xanthophylls), are lipid-soluble antioxidants in the chloroplasts, which play an important defensive role against photooxidative stress in plants. In this study, the interplay between the antioxidant activities of those compounds in excess light stress was analyzed in wild-type (WT) Arabidopsis thaliana and in a tocopherol cyclase mutant (vte1), a homogentisate phytyl transferase mutant (vte2) and a tocopherol cyclase overexpressor (VTE1oex). The results reveal a strategy of cooperation and replacement between α-tocopherol, plastochromanol-8, plastoquinone-9/plastoquinol-9 and zeaxanthin. In the first line of defense (non-radical mechanism), singlet oxygen is either physically or chemically quenched by α-tocopherol; however, when α-tocopherol is consumed, zeaxanthin and plastoquinone-9/plastoquinol-9 can provide alternative protection against singlet oxygen toxicity by functional replacement of α-tocopherol either by zeaxanthin for the physical quenching or by plastoquinone-9/plastoquinol-9 for the chemical quenching. When singlet oxygen escapes this first line of defense, it oxidizes lipids and forms lipid hydroperoxides, which are oxidized to lipid peroxyl radicals by ferric iron. In the second line of defense (radical mechanism), lipid peroxyl radicals are scavenged by α-tocopherol. After its consumption, plastochromanol-8 overtakes this function. We provide a comprehensive description of the reaction pathways underlying the non-radical and radical antioxidant activities of α-tocopherol, carotenoids, plastoquinone-9/plastoquinol-9 and plastochromanol-8. The interplay between the different plastid lipid-soluble antioxidants in the non-radical and the radical mechanism provides step by step insights into protection against photooxidative stress in higher plants.


Arabidopsis , Antioxidants , Arabidopsis/genetics , Chloroplasts , Light , Tocopherols
15.
Mol Plant ; 13(11): 1545-1555, 2020 11 02.
Article En | MEDLINE | ID: mdl-32992028

Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.


Light/adverse effects , Plant Cells/radiation effects , Apoptosis/radiation effects , Chloroplasts/radiation effects , Endoplasmic Reticulum/radiation effects , Lipid Peroxidation/radiation effects , Plant Growth Regulators/physiology , Plant Leaves/cytology , Plant Leaves/radiation effects
16.
Plant Physiol Biochem ; 155: 35-41, 2020 Oct.
Article En | MEDLINE | ID: mdl-32738580

ß-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid ß-carotene. ß-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, ß-cyclocitral and its direct oxidation product, ß-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, ß-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of ß-cyclocitral and of some of its derivatives.


Aldehydes/chemistry , Diterpenes/chemistry , Plants/chemistry , Carotenoids/chemistry
17.
Trends Plant Sci ; 25(12): 1252-1265, 2020 12.
Article En | MEDLINE | ID: mdl-32713776

Plastoquinone-9 (PQ-9) is an essential component of photosynthesis that carries electrons in the linear and alternative electron transport chains, and is also a redox sensor that regulates state transitions and gene expression. However, a large fraction of the PQ pool is located outside the thylakoid membranes, in the plastoglobules and the chloroplast envelopes, reflecting a wider range of functions beyond electron transport. This review describes new functions of PQ in photoprotection, as a potent antioxidant, and in chloroplast metabolism as a cofactor in the biosynthesis of chloroplast metabolites. It also focuses on the essential need for tight environmental control of PQ biosynthesis and for active exchange of this compound between the thylakoid membranes and the plastoglobules. Through its multiple functions, PQ connects photosynthesis with metabolism, light acclimation, and stress tolerance.


Photosynthesis , Plastoquinone , Chloroplasts/metabolism , Electron Transport , Light , Oxidation-Reduction , Plastoquinone/metabolism , Thylakoids/metabolism
18.
Front Plant Sci ; 11: 337, 2020.
Article En | MEDLINE | ID: mdl-32269582

Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.

19.
Plant J ; 102(6): 1266-1280, 2020 06.
Article En | MEDLINE | ID: mdl-31975462

Singlet oxygen (1 O2 ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1 O2 -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1 O2 signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1 O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light-induced cell death. Conversely, light acclimation of ch1 to 1 O2 stress put a limitation in the high light-induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1 O2 induces the ER-mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1 O2 , and a strong activation of the whole UPR is associated with cell death.


Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Signal Transduction , Singlet Oxygen/metabolism , Unfolded Protein Response , Cell Death , Gene Expression Regulation, Plant , Light/adverse effects , Stress, Physiological , Transcriptome
20.
iScience ; 19: 461-473, 2019 Sep 27.
Article En | MEDLINE | ID: mdl-31437750

ß-Cyclocitral (ß-CC) is a volatile compound deriving from 1O2 oxidation of ß-carotene in plant leaves. ß-CC elicits a retrograde signal, modulating 1O2-responsive genes and enhancing tolerance to photooxidative stress. Here, we show that ß-CC is converted into water-soluble ß-cyclocitric acid (ß-CCA) in leaves. This metabolite is a signal that enhances plant tolerance to drought by a mechanism different from known responses such as stomatal closure, osmotic potential adjustment, and jasmonate signaling. This action of ß-CCA is a conserved mechanism, being observed in various plant species, and it does not fully overlap with the ß-CC-dependent signaling, indicating that ß-CCA induces only a branch of ß-CC signaling. Overexpressing SCARECROW-LIKE14 (SCL14, a regulator of xenobiotic detoxification) increased drought tolerance and potentiated the protective effect of ß-CCA, showing the involvement of the SCL14-dependent detoxification in the phenomenon. ß-CCA is a bioactive apocarotenoid that could potentially be used to protect crop plants against drought.

...