Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cerebellum ; 23(2): 620-677, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781689

RESUMEN

The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.


Asunto(s)
Núcleos Cerebelosos , Cerebelo , Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/fisiología , Cerebelo/fisiología , Neuronas/fisiología
2.
Cerebellum ; 21(5): 784-790, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35237930

RESUMEN

Despite the wealth of knowledge of adult cerebellar connectivity, little is known about the developmental mechanisms that underpin its development. Early connectivity is important because it is the foundation of the neural networks crucial for neuronal function and serves as a scaffold on which later tracts form. Conventionally, it is believed that afferents from the vestibular system are the first to invade the cerebellum, at embryonic days (E) 11-E12/13 in mice, where they target the new born Purkinje cells. However, we have demonstrated that pioneer axons that originate from the trigeminal ganglia are already present in the cerebellar primordium by E9, a stage at which afferents from the vestibular ganglia have not yet reached the brainstem, where they target neurons of the cerebellar nuclei. An early-born subset of cerebellar nuclei may be derived from the mesencephalon. These may be the target of the earliest pioneer axons. They form the early connectivity at the rostral end. This is consistent with the notion that the formation of the antero-posterior axis follows a rostro-caudal sequence. The finding that trigeminal ganglion-derived pioneer axons enter the cerebellar primordium before Purkinje cells are born and target the cerebellar nuclei, reveals a novel perspective on the development of early cerebellar connectivity.


Asunto(s)
Cerebelo , Células de Purkinje , Animales , Axones , Núcleos Cerebelosos/fisiología , Cerebelo/fisiología , Ratones , Neuronas/fisiología
3.
Front Neurosci ; 15: 787425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955734

RESUMEN

The cerebellar cortex is highly compartmentalized and serves as a remarkable model for pattern formation throughout the brain. In brief, the adult cerebellar cortex is subdivided into five anteroposterior units-transverse zones-and subsequently, each zone is divided into ∼20 parasagittal stripes. Zone-and-stripe pattern formation involves the interplay of two parallel developmental pathways-one for inhibitory neurons, the second for excitatory. In the inhibitory pathway, progenitor cells of the 4th ventricle generate the Purkinje cells and inhibitory interneurons. In the excitatory pathway, progenitor cells in the upper rhombic lip give rise to the external granular layer, and subsequently to the granular layer of the adult. Both the excitatory and inhibitory developmental pathways are spatially patterned and the interactions of the two generate the complex topography of the adult. This review briefly describes the cellular and molecular mechanisms that underly zone-and-stripe development with a particular focus on mutations known to interfere with normal cerebellar development and the light they cast on the mechanisms of pattern formation.

4.
Front Neural Circuits ; 14: 611841, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519389

RESUMEN

Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Cerebelo/fisiología , Neuronas/fisiología , Animales , Humanos , Interneuronas/fisiología , Neocórtex/fisiología
5.
Cerebellum ; 18(6): 999-1010, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31273610

RESUMEN

The collier/Olf1/EBF family genes encode helix-loop-helix transcription factors (TFs) highly conserved in evolution, initially characterized for their roles in the immune system and in various aspects of neural development. The Early B cell Factor 2 (Ebf2) gene plays an important role in the establishment of cerebellar cortical topography and in Purkinje cell (PC) subtype specification. In the adult cerebellum, Ebf2 is expressed in zebrin II (ZII)-negative PCs, where it suppresses the ZII+ molecular phenotype. However, it is not clear whether Ebf2 is restricted to a PC subset from the onset of its expression or is initially distributed in all PCs and silenced only later in the prospective ZII+ subtype. Moreover, the dynamic distribution and role of Ebf2 in the differentiation of other cerebellar cells remain unclarified. In this paper, by genetic fate mapping, we determine that Ebf2 mRNA is initially found in all PC progenitors, suggesting that unidentified upstream factors silence its expression before completion of embryogenesis. Moreover we show Ebf2 activation in an early born subset of granule cell (GC) precursors homing in the anterior lobe. Conversely, Ebf2 transcription is repressed in other cerebellar cortex interneurons. Last, we show that, although Ebf2 only labels the medial cerebellar nuclei (CN) in the adult cerebellum, the gene is expressed prenatally in projection neurons of all CN. Importantly, in Ebf2 nulls, fastigial nuclei are severely hypocellular, mirroring the defective development of anterior lobe PCs. Our findings further clarify the roles of this terminal selector gene in cerebellar development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Cerebelo/embriología , Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Supervivencia Celular/fisiología , Cerebelo/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células de Purkinje/metabolismo
6.
Brain Struct Funct ; 224(7): 2421-2436, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31256239

RESUMEN

In the standard model for the development of climbing and mossy fiber afferent pathways to the cerebellum, the ingrowing axons target the embryonic Purkinje cell somata (around embryonic ages (E13-E16 in mice). In this report, we describe a novel earlier stage in afferent development. Immunostaining for a neurofilament-associated antigen (NAA) reveals the early axon distributions with remarkable clarity. Using a combination of DiI axon tract tracing, analysis of neurogenin1 null mice, which do not develop trigeminal ganglia, and mouse embryos maintained in vitro, we show that the first axons to innervate the cerebellar primordium as early as E9 arise from the trigeminal ganglion. Therefore, early trigeminal axons are in situ before the Purkinje cells are born. Double immunostaining for NAA and markers of the different domains in the cerebellar primordium reveal that afferents first target the nuclear transitory zone (E9-E10), and only later (E10-E11) are the axons, either collaterals from the trigeminal ganglion or a new afferent source (e.g., vestibular ganglia), seen in the Purkinje cell plate. The finding that the earliest axons to the cerebellum derive from the trigeminal ganglion and enter the cerebellar primordium before the Purkinje cells are born, where they seem to target the cerebellar nuclei, reveals a novel stage in the development of the cerebellar afferents.


Asunto(s)
Cerebelo/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Ganglio del Trigémino/metabolismo , Vías Aferentes/metabolismo , Animales , Axones/metabolismo , Núcleos Cerebelosos/metabolismo , Nervio Vestibular/metabolismo
7.
Cerebellum ; 17(5): 683-684, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29931663

RESUMEN

In the original version of this paper, the Title should have been written with "A Consensus paper" to read "Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper".

8.
Cerebellum ; 17(5): 654-682, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29876802

RESUMEN

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.


Asunto(s)
Cerebelo/anatomía & histología , Cerebelo/fisiología , Animales , Humanos
9.
Cerebellum ; 17(1): 12-16, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28965328

RESUMEN

The cerebellum has a complex architecture-highly reproducible and conserved through evolution. Cerebellar architecture is organized around the Purkinje cell. Purkinje cells in the mouse cerebellum come in many different subtypes, identifiable by expression markers, sensitivity to mutation, etc. These are organized first into five "transverse zones," each of which is further subdivided into dozens of reproducible "stripes." This arrangement serves as the scaffolding to organize afferent topography and restrict the distribution of excitatory and inhibitory interneurons. This brief review will survey some of the mechanisms that lead to the formation of this elaborate pattern during cerebellar development. Pattern formation in the cerebellar cortex is a multistage process that begins early in development with the generation of the various Purkinje cell subtypes, and matures through the dispersal of Purkinje cell clusters into stripes. Two developmental processes will be discussed in particular: the mechanisms that lead to Purkinje cell subtype specification (i.e., how different kinds of Purkinje cells are made) and the role played by Purkinje cell migration in pattern formation (i.e., how these Purkinje cell subtypes end up in a reproducible array of stripes).


Asunto(s)
Tipificación del Cuerpo/fisiología , Cerebelo/citología , Células de Purkinje/metabolismo , Animales , Cerebelo/anatomía & histología , Cerebelo/crecimiento & desarrollo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/clasificación
10.
Development ; 144(20): 3686-3697, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893945

RESUMEN

The Zfp423/ZNF423 gene encodes a 30-zinc-finger transcription factor involved in key developmental pathways. Although null Zfp423 mutants develop cerebellar malformations, the underlying mechanism remains unknown. ZNF423 mutations are associated with Joubert Syndrome, a ciliopathy causing cerebellar vermis hypoplasia and ataxia. ZNF423 participates in the DNA-damage response (DDR), raising questions regarding its role as a regulator of neural progenitor cell cycle progression in cerebellar development. To characterize in vivo the function of ZFP423 in neurogenesis, we analyzed allelic murine mutants in which distinct functional domains are deleted. One deletion impairs mitotic spindle orientation, leading to premature cell cycle exit and Purkinje cell (PC) progenitor pool deletion. The other deletion impairs PC differentiation. In both mutants, cell cycle progression is remarkably delayed and DDR markers are upregulated in cerebellar ventricular zone progenitors. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time strengthens the emerging notion that an impaired DDR may be a key factor in the pathogenesis of JS and other ciliopathies.


Asunto(s)
Ciclo Celular , Proteínas de Unión al ADN/fisiología , Células-Madre Neurales/citología , Neuronas/citología , Células de Purkinje/citología , Factores de Transcripción/fisiología , Anomalías Múltiples/genética , Alelos , Animales , Diferenciación Celular , División Celular , Proliferación Celular , Cerebelo/anomalías , Daño del ADN , Anomalías del Ojo/genética , Eliminación de Gen , Enfermedades Renales Quísticas/genética , Ratones , Mutación , Dominios Proteicos , Retina/anomalías , Huso Acromático/metabolismo , Dedos de Zinc
11.
Cerebellum ; 15(6): 789-828, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439486

RESUMEN

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Cerebelo/citología , Cerebelo/fisiopatología , Consenso , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
12.
Cerebellum ; 14(5): 491-505, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25863812

RESUMEN

There have been suggestions that maternal immune activation is associated with alterations in motor behavior in offspring. To explore this further, we treated pregnant mice with polyinosinic:polycytidylic acid (poly(I:C)), a viral mimetic that activates the innate immune system, or saline on embryonic days 13-15. At postnatal day (P) 18, offspring cerebella were collected from perfused brains and immunostained as whole-mounts for zebrin II. Measurements of zebrin II+/- stripes in both sexes indicated that prenatal poly(I:C)-exposed offspring had significantly wider stripes; this difference was also seen in similarly treated offspring in adulthood (~P120). When sagittal sections of the cerebellum were immunostained for calbindin and Purkinje cell numbers were counted, we observed greater numbers of Purkinje cells in poly(I:C) offspring at both P18 and ~ P120. In adolescence (~P40), both male and female prenatal poly(I:C)-exposed offspring exhibited poorer performance on the rotarod and ladder rung tests; deficits in performance on the latter test persisted into adulthood. Offspring of both sexes from poly(I:C) dams also exhibited impaired social interaction in adolescence, but this difference was no longer apparent in adulthood. Our results suggest that maternal immune exposure at a critical time of cerebellum development can enhance neuronal survival or impair normal programmed cell death of Purkinje cells, with lasting consequences on cerebellar morphology and a variety of motor and non-motor behaviors.


Asunto(s)
Cerebelo/anomalías , Cerebelo/metabolismo , Trastornos del Movimiento/etiología , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Trastorno de la Conducta Social/etiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Calbindinas/metabolismo , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Poli I-C/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Desempeño Psicomotor/efectos de los fármacos , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patología
13.
PLoS One ; 10(2): e0117539, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692946

RESUMEN

Aldolase C, also known as Zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+), alternating with stripes of Purkinje cells with little or no expression (ZII-). The patterns of ZII+ and ZII- stripes in the cerebellum of birds and mammals are strikingly similar, suggesting that it may have first evolved in the stem reptiles. In this study, we examined the expression of ZII in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). In contrast to birds and mammals, the cerebellum of the rattlesnake is much smaller and simpler, consisting of a small, unfoliated dome of cells. A pattern of alternating ZII+ and ZII- sagittal stripes cells was not observed: rather all Purkinje cells were ZII+. This suggests that ZII stripes have either been lost in snakes or that they evolved convergently in birds and mammals.


Asunto(s)
Cerebelo/metabolismo , Crotalus/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Células de Purkinje/metabolismo
14.
Cerebellum ; 14(2): 106-18, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25337886

RESUMEN

The adult mammalian cerebellum is histologically uniform. However, concealed beneath the simple laminar architecture, it is organized rostrocaudally and mediolaterally into complex arrays of transverse zones and parasagittal stripes that is both highly reproducible between individuals and generally conserved across mammals and birds. Beyond this conservation, the general architecture appears to be adapted to the animal's way of life. To test this hypothesis, we have examined cerebellar compartmentation in the talpid star-nosed mole Condylura cristata. The star-nosed mole leads a subterranean life. It is largely blind and instead uses an array of fleshy appendages (the "star") to navigate and locate its prey. The hypothesis suggests that cerebellar architecture would be modified to reduce regions receiving visual input and expand those that receive trigeminal afferents from the star. Zebrin II and phospholipase Cß4 (PLCß4) immunocytochemistry was used to map the zone-and-stripe architecture of the cerebellum of the adult star-nosed mole. The general zone-and-stripe architecture characteristic of all mammals is present in the star-nosed mole. In the vermis, the four typical transverse zones are present, two with alternating zebrin II/PLCß4 stripes, two wholly zebrin II+/PLCß4-. However, the central and nodular zones (prominent visual receiving areas) are proportionally reduced in size and conversely, the trigeminal-receiving areas (the posterior zone of the vermis and crus I/II of the hemispheres) are uncharacteristically large. We therefore conclude that cerebellar architecture is generally conserved across the Mammalia but adapted to the specific lifestyle of the species.


Asunto(s)
Corteza Cerebelosa/anatomía & histología , Corteza Cerebelosa/fisiología , Topos/anatomía & histología , Topos/fisiología , Células de Purkinje/citología , Células de Purkinje/fisiología , Adaptación Fisiológica , Animales , Calbindinas/metabolismo , Ambiente , Femenino , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasa C beta/metabolismo
15.
Front Syst Neurosci ; 8: 41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24734006

RESUMEN

The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse.

16.
Brain Struct Funct ; 219(1): 35-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23160833

RESUMEN

The cerebellar morphological phenotype of the spontaneous neurological mutant mouse dreher (Lmx1a(dr-J)) results from cell fate changes in dorsal midline patterning involving the roof plate and rhombic lip. Positional cloning revealed that the gene Lmx1a, which encodes a LIM homeodomain protein, is mutated in dreher, and is expressed in the developing roof plate and rhombic lip. Loss of Lmx1a causes reduction of the roof plate, an important embryonic signaling center, and abnormal cell fate specification within the embryonic cerebellar rhombic lip. In adult animals, these defects result in variable, medial fusion of the cerebellar vermis and posterior cerebellar vermis hypoplasia. It is unknown whether deleting Lmx1a results in displacement or loss of specific lobules in the vermis. To distinguish between an ectopic and absent vermis, the expression patterns of two Purkinje cell-specific compartmentation antigens, zebrin II/aldolase C and the small heat shock protein HSP25 were analyzed in dreher cerebella. The data reveal that despite the reduction in volume and abnormal foliation of the cerebellum, the transverse zones and parasagittal stripe arrays characteristic of the normal vermis are present in dreher, but may be highly distorted. In dreher mutants with a severe phenotype, zebrin II stripes are fragmented and distributed non-symmetrically about the cerebellar midline. We conclude that although Purkinje cell agenesis or selective Purkinje cell death may contribute to the dreher phenotype, our data suggest that aberrant anlage patterning and granule cell development lead to Purkinje cell ectopia, which ultimately causes abnormal cerebellar architecture in dreher.


Asunto(s)
Cerebelo/anomalías , Cerebelo/patología , Células de Purkinje/patología , Animales , Cerebelo/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Choque Térmico/metabolismo , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Mutantes , Chaperonas Moleculares , Mutación/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo , Factores de Transcripción/genética
17.
PLoS One ; 8(11): e78654, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260123

RESUMEN

BACKGROUND: The neuroplastins np65 and np55 are two synapse-enriched immunoglobulin (Ig) superfamily adhesion molecules that contain 3 and 2 Ig domains respectively. Np65 is implicated in long term, activity dependent synaptic plasticity, including LTP. Np65 regulates the surface expression of GluR1 receptor subunits and the localisation of GABA(A) receptor subtypes in hippocampal neurones. The brain is dependent not only on glucose but on monocarboxylates as sources of energy. The. monocarboxylate transporters (MCTs) 1-4 are responsible for the rapid proton-linked translocation of monocarboxylates including pyruvate and lactate across the plasma membrane and require association with either embigin or basigin, proteins closely related to neuroplastin, for plasma membrane expression and activity. MCT2 plays a key role in providing lactate as an energy source to neurons. METHODOLOGY/FINDINGS: Here we use co-transfection of neuroplastins and monocarboxylate transporters into COS-7 cells to demonstrate that neuroplastins can act as ancillary proteins for MCT2. We also show that Xenopus laevis oocytes contain endogenous neuroplastin and its knockdown with antisense RNA reduces the surface expression of MCT2 and associated lactate transport. Immunocytochemical studies show that MCT2 and the neuroplastins are co-localised in rat cerebellum. Strikingly neuroplastin and MCT2 are enriched in the same parasagittal zebrin II-negative stripes. CONCLUSIONS: These data strongly suggest that neuroplastins act as key ancillary proteins for MCT2 cell surface localisation and activity in some neuronal populations, thus playing an important role in facilitating the uptake of lactate for use as a respiratory fuel.


Asunto(s)
Membrana Celular/metabolismo , Cerebelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , Animales , Transporte Biológico Activo/fisiología , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Ácido Láctico/metabolismo , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Transportadores de Ácidos Monocarboxílicos/genética , Ratas , Ratas Sprague-Dawley , Xenopus laevis
18.
Brain Behav Evol ; 80(3): 196-209, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22907194

RESUMEN

The mammalian cerebellar cortex is apparently uniform in composition, but a complex heterogeneous pattern can be revealed by using biochemical markers such as zebrin II/aldolase C, which is expressed by a subset of Purkinje cells that form a highly reproducible array of transverse zones and parasagittal stripes. The architecture revealed by zebrin II expression is conserved among many taxa of birds and mammals. In this report zebrin II immunohistochemistry has been used in both section and whole-mount preparations to analyze the cerebellar architecture of the Australian tammar wallaby (Macropus eugenii). The gross appearance of the wallaby cerebellum is remarkable, with unusually elaborate cerebellar lobules with multiple sublobules and fissures. However, despite the morphological complexity, the underlying zone and stripe architecture is conserved and the typical mammalian organization is present.


Asunto(s)
Antígenos/análisis , Tipificación del Cuerpo , Corteza Cerebelosa/anatomía & histología , Macropodidae/anatomía & histología , Proteínas del Tejido Nervioso/análisis , Animales , Corteza Cerebelosa/química , Corteza Cerebelosa/inmunología , Femenino , Macropodidae/inmunología , Masculino , Mamíferos/anatomía & histología , Mamíferos/clasificación , Ratones/anatomía & histología , Células de Purkinje/química , Especificidad de la Especie
19.
J Vis Exp ; (62): e4042, 2012 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-22508094

RESUMEN

The repeated and well-understood cellular architecture of the cerebellum make it an ideal model system for exploring brain topography. Underlying its relatively uniform cytoarchitecture is a complex array of parasagittal domains of gene and protein expression. The molecular compartmentalization of the cerebellum is mirrored by the anatomical and functional organization of afferent fibers. To fully appreciate the complexity of cerebellar organization we previously refined a wholemount staining approach for high throughput analysis of patterning defects in the mouse cerebellum. This protocol describes in detail the reagents, tools, and practical steps that are useful to successfully reveal protein expression patterns in the adult mouse cerebellum by using wholemount immunostaining. The steps highlighted here demonstrate the utility of this method using the expression of zebrinII/aldolaseC as an example of how the fine topography of the brain can be revealed in its native three-dimensional conformation. Also described are adaptations to the protocol that allow for the visualization of protein expression in afferent projections and large cerebella for comparative studies of molecular topography. To illustrate these applications, data from afferent staining of the rat cerebellum are included.


Asunto(s)
Química Encefálica , Cerebelo/anatomía & histología , Cerebelo/química , Inmunohistoquímica/métodos , Animales , Cerebelo/metabolismo , Femenino , Masculino , Ratones , Ratas
20.
Front Neural Circuits ; 6: 123, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23346049

RESUMEN

The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA