Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 342: 189-200, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990702

RESUMEN

For effective resolution of regional subacute inflammation and prevention of biofouling formation, we have developed a polymeric implant that can release meloxicam, a selective cyclooxygenase (COX)-2 inhibitor, in a sustained manner. Meloxicam-loaded polymer matrices were produced by hot-melt extrusion, with commercially available biocompatible polymers, poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(ethylene vinyl acetate) (EVA). PLGA and EVA had a limited control over the drug release rate partly due to the acidic microenvironment and hydrophobicity, respectively. PCL allowed for sustained release of meloxicam over two weeks and was used as a carrier of meloxicam. Solid-state and image analyses indicated that the PCL matrices encapsulated meloxicam in crystalline clusters, which dissolved in aqueous medium and generated pores for subsequent drug release. The subcutaneously implanted meloxicam-loaded PCL matrices in rats showed pharmacokinetic profiles consistent with their in vitro release kinetics, where higher drug loading led to faster drug release. This study finds that the choice of polymer platform is crucial to continuous release of meloxicam and the drug release rate can be controlled by the amount of drug loaded in the polymer matrices.


Asunto(s)
Portadores de Fármacos , Polímeros , Animales , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Liberación de Fármacos , Meloxicam , Polímeros/química , Ratas
2.
J Pharm Sci ; 110(3): 1418-1426, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33321138

RESUMEN

Insulin infusion sets worn for more than 4-5 days have been associated with a greater risk of unexplained hyperglycemia, a phenomenon that has been hypothesized to be caused by an inflammatory response to preservatives such as m-cresol and phenol. In this cross-over study in diabetic swine, we examined the role of the preservative m-cresol in inflammation and changes in infusion site patency. Insulin pharmacokinetics (PK) and glucose pharmacodynamics (PD) were measured on delivery of a bolus of regular human insulin U-100 (U-100R), formulated with or without 2.5 mg/mL m-cresol, to fasted swine following 0, 3, 5, 7, and 10 days of continuous subcutaneous insulin infusion (CSII). In a subsequent study with the same animals, biopsies were evaluated from swine wearing infusion sets infusing nothing, saline, or U-100R either with or without 2.5 mg/mL m-cresol, following 3, 7, and 10 days of CSII. Exposure to m-cresol did not impact any PK or PD endpoints. PK and PD responses dropped markedly from Days 7-10, regardless of the presence of m-cresol. Histopathology results suggest an additive inflammatory response to both the infusion set and the insulin protein itself, peaking at Day 7 and remaining stable beyond.


Asunto(s)
Diabetes Mellitus , Insulina , Animales , Glucemia , Cresoles , Estudios Cruzados , Hipoglucemiantes , Sistemas de Infusión de Insulina , Porcinos
3.
Diabetes ; 64(3): 819-27, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25288673

RESUMEN

The absence of insulin results in oscillating hyperglycemia and ketoacidosis in type 1 diabetes. Remarkably, mice genetically deficient in the glucagon receptor (Gcgr) are refractory to the pathophysiological symptoms of insulin deficiency, and therefore, studies interrogating this unique model may uncover metabolic regulatory mechanisms that are independent of insulin. A significant feature of Gcgr-null mice is the high circulating concentrations of GLP-1. Hence, the objective of this report was to investigate potential noninsulinotropic roles of GLP-1 in mice where GCGR signaling is inactivated. For these studies, pancreatic ß-cells were chemically destroyed by streptozotocin (STZ) in Gcgr(-/-):Glp-1r(-/-) mice and in Glp-1r(-/-) animals that were subsequently treated with a high-affinity GCGR antagonist antibody that recapitulates the physiological state of Gcgr ablation. Loss of GLP-1 action substantially worsened nonfasting glucose concentrations and glucose tolerance in mice deficient in, and undergoing pharmacological inhibition of, the GCGR. Further, lack of the Glp-1r in STZ-treated Gcgr(-/-) mice elevated rates of endogenous glucose production, likely accounting for the differences in glucose homeostasis. These results support the emerging hypothesis that non-ß-cell actions of GLP-1 analogs may improve metabolic control in patients with insulinopenic diabetes.


Asunto(s)
Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Receptores de Glucagón/deficiencia , Animales , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Inmunohistoquímica , Ratones , Ratones Noqueados , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Estreptozocina/farmacología
4.
Am J Physiol Endocrinol Metab ; 305(2): E282-92, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23715724

RESUMEN

Obesity continues to be a global health problem, and thus it is imperative that new pathways regulating energy balance be identified. Recently, it was reported: (Hayashi K, Cao T, Passmore H, Jourdan-Le Saux C, Fogelgren B, Khan S, Hornstra I, Kim Y, Hayashi M, Csiszar K. J Invest Dermatol 123: 864-871, 2004) that mice carrying a missense mutation in myelin protein zero-like 3 (Mpzl3rc) have reduced body weight. To determine how Mpzl3 controls energy balance in vivo, we generated mice deficient in myelin protein zero-like 3 (Mpzl3-KO). Interestingly, KO mice were hyperphagic yet had reduced body weight and fat mass. Moreover, KO mice were highly resistant to body weight and fat mass gain after exposure to a high-fat, energy-dense diet. These effects on body weight and adiposity were driven, in part, by a pronounced increase in whole body energy expenditure levels in KO mice. KO mice also had reduced blood glucose levels during an intraperitoneal glucose challenge and significant reductions in circulating insulin levels suggesting an increase in insulin sensitivity. In addition, there was an overall increase in oxidative capacity and contractile force in skeletal muscle isolated from KO mice. Hepatic triglyceride levels were reduced by 92% in livers of KO mice, in part due to a reduction in de novo lipid synthesis. Interestingly, Mpzl3 mRNA expression in liver was increased in diet-induced obese mice. Moreover, KO mice exhibited an increase in insulin-stimulated Akt signaling in the liver, further demonstrating that Mpzl3 can regulate insulin sensitivity in this tissue. We have determined that Mpzl3 has a novel physiological role in controlling body weight regulation, energy expenditure, glycemic control, and hepatic triglyceride synthesis in mice.


Asunto(s)
Glucemia/fisiología , Metabolismo Energético/fisiología , Lípidos/biosíntesis , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Adiposidad/genética , Adiposidad/fisiología , Animales , Análisis Químico de la Sangre , Western Blotting , Temperatura Corporal/fisiología , Dieta , Dislipidemias/genética , Dislipidemias/metabolismo , Prueba de Tolerancia a la Glucosa , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Triglicéridos/metabolismo , Aumento de Peso/fisiología
5.
Cell Metab ; 5(3): 167-79, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17339025

RESUMEN

Insulin resistance occurs in 20%-25% of the human population, and the condition is a chief component of type 2 diabetes mellitus and a risk factor for cardiovascular disease and certain forms of cancer. Herein, we demonstrate that the sphingolipid ceramide is a common molecular intermediate linking several different pathological metabolic stresses (i.e., glucocorticoids and saturated fats, but not unsaturated fats) to the induction of insulin resistance. Moreover, inhibition of ceramide synthesis markedly improves glucose tolerance and prevents the onset of frank diabetes in obese rodents. Collectively, these data have two important implications. First, they indicate that different fatty acids induce insulin resistance by distinct mechanisms discerned by their reliance on sphingolipid synthesis. Second, they identify enzymes required for ceramide synthesis as therapeutic targets for combating insulin resistance caused by nutrient excess or glucocorticoid therapy.


Asunto(s)
Ceramidas/metabolismo , Ácidos Grasos/metabolismo , Glucocorticoides/metabolismo , Resistencia a la Insulina , Obesidad/metabolismo , Animales , Ceramidas/biosíntesis , Diabetes Mellitus Tipo 2/metabolismo , Grasas Insaturadas/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados , Oxidorreductasas/genética , Ratas , Ratas Sprague-Dawley , Esfingolípidos/metabolismo
8.
J Clin Invest ; 115(6): 1627-35, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15902306

RESUMEN

Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21-transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Factores de Crecimiento de Fibroblastos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Adipocitos/citología , Adipocitos/metabolismo , Animales , Glucemia/análisis , División Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/sangre , Diabetes Mellitus/patología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hiperglucemia/sangre , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hipoglucemiantes/metabolismo , Ratones , Ratones Obesos , Ratones Transgénicos , Triglicéridos/sangre , Aumento de Peso/efectos de los fármacos , Aumento de Peso/genética
9.
J Biol Chem ; 279(39): 40699-706, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15247264

RESUMEN

Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle. Microscopic analysis revealed that cortical F-actin is markedly diminished in muscle exposed to latrunculin B. Depolymerization of cortical F-actin with latrunculin B caused a time- and concentration-dependent decline in 2-deoxyglucose transport. The loss of cortical F-actin and glucose transport was paralleled by a decline in insulin-stimulated GLUT4 translocation, as assessed by photolabeling of cell surface GLUT4 with Bio-LC-ATB-BMPA. Although latrunculin B impaired insulin-stimulated GLUT4 translocation and glucose transport, activation of phosphatidylinositol 3-kinase and Akt by insulin was not rendered ineffective. In contrast, the ability of insulin to elicit the cortical F-actin localization of N-WASP was abrogated. These data provide the first evidence that actin cytoskeletal mechanics are an essential feature of the glucose transport process in intact skeletal muscle. Furthermore, these findings support a distal actin-based role for N-WASP in insulin action in vivo.


Asunto(s)
Actinas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Citoesqueleto/metabolismo , Insulina/metabolismo , Proteínas de Transporte de Monosacáridos/fisiología , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tiazoles/química , Animales , Transporte Biológico , Desoxiglucosa/química , Desoxiglucosa/metabolismo , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4 , Proteínas Sustrato del Receptor de Insulina , Luz , Masculino , Microscopía Confocal , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Wistar , Tiazolidinas , Factores de Tiempo , Proteína Neuronal del Síndrome de Wiskott-Aldrich
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...