Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Biophotonics ; : e202400058, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695390

Vascular diseases are a leading cause of death and disability worldwide. Despite having precursor conditions like peripheral arterial disease (PAD), they are often only diagnosed after the onset of stroke or heart attack. Low-cost, portable, noninvasive, point-of-care (POC), label-free assessment of deep vascular function benefits PAD diagnosis, especially in resource poor settings of the world. Doppler ultrasound-based blood flow measurements can diagnose PAD, albeit with limited sensitivity and specificity. To overcome this, here, we propose the first-of-its-kind dual-modality photoacoustic-and-ultrasound (PAUS) imaging system that integrates a multiwavelength pulsed laser diode (PLD) with a compact ultrasound data acquisition unit. The mesoscopic imaging depth of the portable PLD-PAUS system was validated using tissue phantoms, and its multispectral photoacoustic imaging capabilities were validated using an atherosclerosis-mimicking phantom. Furthermore, we demonstrated high-contrast volumetric in vivo photoacoustic imaging of rodent abdominal vasculature and quantified vessel reactivity due to hypercapnia stimulation. The multiparametric functional and molecular imaging capabilities of the PLD-PAUS system holds promise for POC applications.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Article En | MEDLINE | ID: mdl-33477618

Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO's short half-life, detection and quantification is difficult. The inability to quantify NO has hindered researchers' understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, becomes selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT's fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.

...