Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Pharmacol Res Perspect ; 10(1): e00932, 2022 02.
Article En | MEDLINE | ID: mdl-35156331

P-glycoprotein (P-gp, MDR1) is expressed at the blood-brain barrier (BBB) and restricts penetration of its substrates into the central nervous system (CNS). In vitro MDR1 assays are frequently used to predict the in vivo relevance of MDR1-mediated efflux at the BBB. It has been well established that drug candidates with high MDR1 efflux ratios (ERs) display poor CNS penetration. Following a comparison of MDR1 transporter function between the MDR1-MDCKI cell line from National Institutes of Health (NIH) and our internal MDR1-MDCKII cell line, the former was found to provide better predictions of in vivo brain penetration than our in-house MDR1-MDCKII cell line. In particular, the NIH MDR1 assay has an improved sensitivity to differentiate the compounds with ERs of <3 in our internal cell line and is able to reduce the risk of false negatives. A better correlation between NIH MDR1 ERs and brain penetration in rat and non-human primate (NHP) was demonstrated. Additionally, a comparison of brain penetration time course of MDR1 substrates and an MDR1 non-substrate in NHP demonstrated that MDR1 interaction can delay the time to equilibrium of drug concentration in the brain with plasma. It is recommended to select highly permeable compounds without MDR1 interaction for rapid brain penetration to produce the maximal pharmacological effect in the CNS with a quicker onset.


Blood-Brain Barrier/metabolism , Brain/metabolism , Pharmaceutical Preparations/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Dogs , Drug Evaluation, Preclinical/methods , Humans , Macaca fascicularis , Madin Darby Canine Kidney Cells , Male , Rats , Rats, Sprague-Dawley , Species Specificity , Time Factors , Tissue Distribution
2.
Clin Pharmacokinet ; 55(7): 875-887, 2016 07.
Article En | MEDLINE | ID: mdl-26895021

BACKGROUND: The emergence of genetic data linking Nav1.7 sodium channel over- and under- expression to human pain signalling has led to an interest in the treatment of chronic pain through inhibition of Nav1.7 channels. OBJECTIVE: We describe the pharmacokinetic (PK) results of a clinical microdose study performed with four potent and selective Nav1.7 inhibitors and the subsequent modelling resulting in the selection of a single compound to explore Nav1.7 pharmacology at higher doses. METHODS: A clinical microdose study to investigate the intravenous and oral PK of four compounds (PF-05089771, PF-05150122, PF-05186462 and PF-05241328) was performed in healthy volunteers. PK parameters were derived via noncompartmental analysis. A physiologically-based PK (PBPK) model was used to predict exposure and multiples of Nav1.7 50 % inhibitory concentration (IC50) for each compound at higher doses. RESULTS: Plasma clearance, volume of distribution and bioavailability ranged from 45 to 392 mL/min/kg, 13 to 36 L/kg and 38 to 110 %, respectively. The PBPK model for PF-05089771 predicted a 1 g oral dose would be required to achieve exposures of approximately 12× Nav1.7 IC50 at maximum concentration (C max), and approximately 3× IC50 after 12 h (minimum concentration [C min] for a twice-daily regimen). Lower multiples of Nav1.7 IC50 were predicted with the same oral doses of PF-05150122, PF-05186462, and PF-05241328. In a subsequent single ascending oral dose clinical study, the predictions for PF-05089771 compared well with observed data. CONCLUSION: Based on the human PK data obtained from the microdose study and subsequent modelling, PF-05089771 provided the best opportunity to explore Nav1.7 blockade for the treatment of acute or chronic pain conditions.


Phenyl Ethers/administration & dosage , Phenyl Ethers/pharmacokinetics , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/administration & dosage , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Adolescent , Adult , Area Under Curve , Biological Availability , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Hydrogen-Ion Concentration , Male , Metabolic Clearance Rate , Middle Aged , Models, Biological , Young Adult
3.
ACS Med Chem Lett ; 6(6): 650-4, 2015 Jun 11.
Article En | MEDLINE | ID: mdl-26101568

Voltage-gated sodium channels, in particular Nav1.8, can be targeted for the treatment of neuropathic and inflammatory pain. Herein, we described the optimization of Nav1.8 modulator series to deliver subtype selective, state, and use-dependent chemical matter that is efficacious in preclinical models of neuropathic and inflammatory pain.

4.
Xenobiotica ; 42(1): 11-27, 2012 Jan.
Article En | MEDLINE | ID: mdl-21970687

Optimising drug properties can be an important strategy to limit penetration into the CNS and offers advantages in reducing the risk of undesirable neurological effects When considering the design of these drugs it is important to consider the relative influx and efflux rates at the relevant biological membranes The highest degree of restriction at the brain is probably achievable by utilising active transport to exclude compounds from the brain Affinity for the efflux transporters Pgp and BCRP has been achieved in two in-house chemistry programmes by increasing polar surface area, which resulted in highly orally bioavailable low CNS penetrant compounds in preclinical species.


Central Nervous System/drug effects , Drug Compounding/methods , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions/metabolism , Pharmaceutical Preparations/metabolism , Blood-Brain Barrier/metabolism , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Structure-Activity Relationship
5.
Xenobiotica ; 42(1): 57-74, 2012 Jan.
Article En | MEDLINE | ID: mdl-21992032

PF-184298 ((S)-2,3-dichloro-N-isobutyl-N-pyrrolidin-3-ylbenzamide) and PF-4776548 ((3-(4-fluoro-2-methoxy-benzyl)-7-hydroxy-8,9-dihydro-3H,7H-pyrrolo[2,3-c][1,7]naphthyridin-6-one)) are novel compounds which were selected to progress to human studies. Discordant human pharmacokinetic predictions arose from pre-clinical in vivo studies in rat and dog, and from human in vitro studies, resulting in a clearance prediction range of 3 to >20 mL min⁻¹ kg⁻¹ for PF-184298, and 5 to >20 mL min⁻¹ kg⁻¹ for PF-4776548. A package of work to investigate the discordance for PF-184298 is described. Although ultimately complementary to the human pharmacokinetic data in characterising the disposition of PF-184298 in humans, these data did not provide any further confidence in pharmacokinetic prediction. A fit for purpose human pharmacokinetic study was conducted for each compound, with an oral pharmacologically active dose for PF-184298, and an intravenous and oral microdose for PF-4776548. This provided a relatively low cost, clear decision making approach, resulting in the termination of PF-4776548 and further progression of PF-184298. A retrospective analysis of the data showed that, if the tools had been available at the time, the pharmacokinetics of PF-184298 in human could have been predicted from a population based simulation tool in combination with physicochemical properties and in vitro human intrinsic clearance.


Anilides/pharmacokinetics , Drug Evaluation, Preclinical/methods , Models, Biological , Naphthyridines/pharmacokinetics , Pyrrolidines/pharmacokinetics , Adult , Anilides/administration & dosage , Animal Testing Alternatives , Animals , Dogs , Drug Discovery , Humans , Male , Microsomes, Liver/metabolism , Naphthyridines/administration & dosage , Pharmacokinetics , Pyrrolidines/administration & dosage , Rats , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Statistics as Topic , Young Adult
6.
Xenobiotica ; 42(1): 94-106, 2012 Jan.
Article En | MEDLINE | ID: mdl-22035569

Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.


Drug Discovery/methods , Models, Biological , Pharmaceutical Preparations/metabolism , Drug Interactions , Drug-Related Side Effects and Adverse Reactions , Humans , Ketoconazole/administration & dosage , Ketoconazole/pharmacokinetics , Ketoconazole/pharmacology , Pharmaceutical Preparations/blood , Pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Sulfones/administration & dosage , Sulfones/pharmacokinetics , Sulfones/pharmacology
7.
Drug Metab Dispos ; 37(9): 1864-70, 2009 Sep.
Article En | MEDLINE | ID: mdl-19546239

The relationship between rat pharmacokinetics and physicochemical parameters [the partition coefficient between octanol and buffer at pH 7.4 (log D((7.4))) and pK(a)] was studied for a series of tetrahydropyran compounds. Sixteen compounds ranging in log D((7.4)) 0.1 to 1.8 were administered intravenously to rats, and the pharmacokinetic parameters were determined from blood concentration time curves. Across the series, a weak correlation was observed between log D((7.4)) and blood clearance, suggesting that log D((7.4)) values less than 0.5 were required to prevent clearance at hepatic blood flow. In terms of the volume of distribution (V(d)), the compounds fell into three distinct subseries characterized by the number of basic centers and differences in ionization of each basic center at physiological pH. These were referred to as the monobasic, weak second base, and strong second base subseries. All the compounds exhibited V(d) greater than body water, as would be expected from their lipophilic and basic nature. For a given clog P, the strong second base subseries showed higher V(d) than the weak second base subseries, which in turn exhibited higher values than the monobasic subseries. In addition, for the weak second base subseries, V(d) could be tuned by modulating the pK(a) of the second basic center. This relationship was rationalized in respect to the interactions of the ionizable centers with phospholipid heads in the cell membrane and/or lysosomal trapping. Compounds in the weak second base subseries showed optimal V(d), and when combined with a log D((7.4)) of 0.1, driving to moderate blood clearance, one compound showed the optimal pharmacokinetic profile.


Histamine H3 Antagonists/pharmacokinetics , Octanols/chemistry , Pyrans/pharmacokinetics , Animals , Biological Availability , Buffers , Cytochrome P-450 Enzyme System/metabolism , Half-Life , Histamine H3 Antagonists/blood , Histamine H3 Antagonists/chemistry , Humans , Hydrogen-Ion Concentration , Injections, Intravenous , Kinetics , Male , Microsomes, Liver , Protein Binding , Pyrans/blood , Pyrans/chemistry , Rats , Rats, Sprague-Dawley
...