Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell ; 185(14): 2495-2509.e11, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35764090

RESUMEN

Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.


Asunto(s)
Citrus sinensis , Microbioma Gastrointestinal , Animales , Citrus sinensis/metabolismo , Fibras de la Dieta , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Humanos , Ratones , Pectinas/metabolismo , Polisacáridos/metabolismo , Serotonina/análogos & derivados
3.
Proc Natl Acad Sci U S A ; 119(20): e2123411119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533274

RESUMEN

Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type ß/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Polisacáridos/metabolismo , Proteoma
4.
Nature ; 595(7865): 91-95, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163075

RESUMEN

Changing food preferences brought about by westernization that have deleterious health effects1,2-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods3. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity4-6. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community7-9. However, the microbiome is complex, dynamic and exhibits considerable intra- and interpersonal variation in its composition and functions. The large number of potential interactions between the components of the microbiome makes it challenging to define the mechanisms by which food ingredients affect community properties. Here we address the question of how foods containing different fibre preparations can be designed to alter functions associated with specific components of the microbiome. Because a marked increase in snack consumption is associated with westernization, we formulated snack prototypes using plant fibres from different sustainable sources that targeted distinct features of the gut microbiomes of individuals with obesity when transplanted into gnotobiotic mice. We used these snacks to supplement controlled diets that were consumed by adult individuals with obesity or who were overweight. Fibre-specific changes in their microbiomes were linked to changes in their plasma proteomes indicative of an altered physiological state.


Asunto(s)
Fibras de la Dieta/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Bocadillos , Adolescente , Adulto , Animales , Bacteroides/efectos de los fármacos , Bacteroides/aislamiento & purificación , Proteínas Sanguíneas/análisis , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad/microbiología , Sobrepeso/microbiología , Proteoma/análisis , Proteoma/efectos de los fármacos , Adulto Joven
5.
Metabolomics ; 16(11): 119, 2020 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-33164148

RESUMEN

INTRODUCTION: To date, there has been little effort to develop standards for metabolome-based gut microbiome measurements despite the significant efforts toward standard development for DNA-based microbiome measurements. OBJECTIVES: The National Institute of Standards and Technology (NIST), The BioCollective (TBC), and the North America Branch of the International Life Sciences Institute (ILSI North America) are collaborating to extend NIST's efforts to develop a Human Whole Stool Reference Material for the purpose of method harmonization and eventual quality control. METHODS: The reference material will be rationally designed for adequate quality assurance and quality control (QA/QC) for underlying measurements in the study of the impact of diet and nutrition on functional aspects of the host gut microbiome and relationships of those functions to health. To identify which metabolites deserve priority in their value assignment, NIST, TBC, and ILSI North America jointly conducted a workshop on September 12, 2019 at the NIST campus in Gaithersburg, Maryland. The objective of the workshop was to identify metabolites for which evidence indicates relevance to health and disease and to decide on the appropriate course of action to develop a fit-for-purpose reference material. RESULTS: This document represents the consensus opinions of workshop participants and co-authors of this manuscript, and provides additional supporting information. In addition to developing general criteria for metabolite selection and a preliminary list of proposed metabolites, this paper describes some of the strengths and limitations of this initiative given the current state of microbiome research. CONCLUSIONS: Given the rapidly evolving nature of gut microbiome science and the current state of knowledge, an RM (as opposed to a CRM) measured for multiple metabolites is appropriate at this stage. As the science evolves, the RM can evolve to match the needs of the research community. Ultimately, the stool RM may exist in sequential versions. Beneficial to this evolution will be a clear line of communication between NIST and the stakeholder community to ensure alignment with current scientific understanding and community needs.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Dieta , Heces/química , Humanos , Metabolómica , Metagenómica
6.
Cell ; 179(1): 59-73.e13, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539500

RESUMEN

Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.


Asunto(s)
Bacteroides/genética , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes/fisiología , Interacciones Microbianas/efectos de los fármacos , Polisacáridos/farmacología , Proteómica/métodos , Animales , Dieta/métodos , Fibras de la Dieta/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Polisacáridos/metabolismo
7.
Science ; 341(6150): 1241214, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-24009397

RESUMEN

The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin's microbiota (Ob) with mice containing the lean co-twin's microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.


Asunto(s)
Adiposidad , Bacteroidetes/fisiología , Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Obesidad/metabolismo , Adulto , Animales , Bacteroidetes/genética , Ciego/metabolismo , Ciego/microbiología , Dieta con Restricción de Grasas , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Humanos , Metaboloma , Metagenoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/genética , Delgadez/microbiología , Gemelos , Aumento de Peso , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA