Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 14557, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008439

RESUMEN

This work presents the vision pipeline for our in-house developed autonomous reconfigurable pavement sweeping robot named Panthera. As the goal of Panthera is to be an autonomous self-reconfigurable robot, it has to understand the type of pavement it is moving in so that it can adapt smoothly to changing pavement width and perform cleaning operations more efficiently and safely. deep learning (DL) based vision pipeline is proposed for the Panthera robot to recognize pavement features, including pavement type identification, pavement surface condition prediction, and pavement width estimation. The DeepLabv3+ semantic segmentation algorithm was customized to identify the pavement type classification, an eight-layer CNN was proposed for pavement surface condition prediction. Furthermore, pavement width estimation was computed by fusing the segmented pavement region on the depth map. In the end, the fuzzy inference system was implemented by taking input as the pavement width and its conditions detected and output as the safe operational speed. The vision pipeline was trained using the DL provided with the custom pavement images dataset. The performance was evaluated using offline test and real-time field trial images captured through the reconfigurable robot Panthera stereo vision sensor. In the experimental analysis, the DL-based vision pipeline components scored 88.02% and 93.22% accuracy for pavement segmentation and pavement surface condition assessment, respectively, and took approximately 10 ms computation time to process the single image frame from the vision sensor using the onboard computer.


Asunto(s)
Robótica , Algoritmos , Semántica
2.
Sensors (Basel) ; 21(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34450767

RESUMEN

Routine rodent inspection is essential to curbing rat-borne diseases and infrastructure damages within the built environment. Rodents find false ceilings to be a perfect spot to seek shelter and construct their habitats. However, a manual false ceiling inspection for rodents is laborious and risky. This work presents an AI-enabled IoRT framework for rodent activity monitoring inside a false ceiling using an in-house developed robot called "Falcon". The IoRT serves as a bridge between the users and the robots, through which seamless information sharing takes place. The shared images by the robots are inspected through a Faster RCNN ResNet 101 object detection algorithm, which is used to automatically detect the signs of rodent inside a false ceiling. The efficiency of the rodent activity detection algorithm was tested in a real-world false ceiling environment, and detection accuracy was evaluated with the standard performance metrics. The experimental results indicate that the algorithm detects rodent signs and 3D-printed rodents with a good confidence level.


Asunto(s)
Redes Neurales de la Computación , Roedores , Algoritmos , Animales , Ratas
3.
Sensors (Basel) ; 21(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802434

RESUMEN

Regular washing of public pavements is necessary to ensure that the public environment is sanitary for social activities. This is a challenge for autonomous cleaning robots, as they must adapt to the environment with varying pavement widths while avoiding pedestrians. A self-reconfigurable pavement sweeping robot, named Panthera, has the mechanisms to perform reconfiguration in width to enable smooth cleaning operations, and it changes its behavior based on environment dynamics of moving pedestrians and changing pavement widths. Reconfiguration in the robot's width is possible, due to the scissor mechanism at the core of the robot's body, which is driven by a lead screw motor. Panthera will perform locomotion and reconfiguration based on perception sensors feedback control proposed while using an Red Green Blue-D (RGB-D) camera. The proposed control scheme involves publishing robot kinematic parameters for reconfiguration during locomotion. Experiments were conducted in outdoor pavements to demonstrate the autonomous reconfiguration during locomotion to avoid pedestrians while complying with varying pavements widths in a real-world scenario.


Asunto(s)
Peatones , Robótica , Retroalimentación , Humanos , Locomoción , Percepción
4.
Sensors (Basel) ; 21(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917223

RESUMEN

The pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera. Semantic segmentation framework SegNet was adopted to segment the pavement region from other objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was adopted for the geotagging of the defects. The proposed system was implemented and tested with the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed technique identifies the pavement defects and litters or garbage detection with high accuracy. The experimental results on the crack and garbage detection are presented. It is found that the proposed technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or cleaning tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...