Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 109(24): 5307-15, 2005 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16839054

RESUMEN

Trifluoronitrosomethane (CF3NO) was trapped in rare gas matrixes and irradiated at 633 and 670 nm. The infrared spectra of the postirradiation samples exhibit features consistent with cis and trans conformers of bis(trifluoromethyl)dioxodiazine, a previously uncharacterized species. The concentration dependence of the formation of the dimer is consistent with a mechanism in which monomers trapped in adjacent sites undergo excitation and subsequent reaction. The dimers reversibly form the monomer when irradiated with ultraviolet light. Density functional theory was used to determine the structure of the dimers and predict their infrared and Raman spectra. The predicted vibrational frequencies are in agreement with those observed. A third (skewed) conformation was predicted to have a triplet ground state, but no evidence of this species was observed. All three dimers exhibit significant diradical character, as evidenced by comparatively low N-N and high N-O stretching frequencies. Transition-state calculations predict the dimerization barrier to range from 17.1 (cis) to 35.0 (trans) kJ mol(-1) for the singlet dimers and to be 62.1 kJ mol(-1) for the triplet dimer. This is an example of nitroso dimerization that requires electronic excitation to proceed.

2.
J Am Chem Soc ; 126(12): 3954-63, 2004 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15038750

RESUMEN

We have studied the interaction of vapor-deposited Al, Cu, Ag, and Au atoms on a methoxy-terminated self-assembled monolayer (SAM) of HS(CH(2))(16)OCH(3) on polycrystalline Au[111]. Time-of-flight secondary ion mass spectrometry, infrared reflection spectroscopy, and X-ray photoelectron spectroscopy measurements at increasing coverages of metal show that for Cu and Ag deposition at all coverages the metal atoms continuously partition into competitive pathways: penetration through the SAM to the S/substrate interface and solvation-like interaction with the -OCH(3) terminal groups. Deposited Au atoms, however, undergo only continuous penetration, even at high coverages, leaving the SAM "floating" on the Au surface. These results contrast with earlier investigations of Al deposition on a methyl-terminated SAM where metal atom penetration to the Au/S interface ceases abruptly after a approximately 1:1 Al/Au layer has been attained. These observations are interpreted in terms of a thermally activated penetration mechanism involving dynamic formation of diffusion channels in the SAM via hopping of alkanethiolate-metal (RSM-) moieties across the surface. Using supporting quantum chemical calculations, we rationalized the results in terms of the relative heights of the hopping barriers, RSAl > RSAg, RSCu > RSAu, and the magnitudes of the metal-OCH(3) solvation energies.

3.
J Am Chem Soc ; 124(19): 5528-41, 2002 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11996596

RESUMEN

The interaction of vapor-deposited Al atoms with self-assembled monolayers (SAMs) of HS-(CH(2))(16)-X (X = -OH and -OCH(3)) chemisorbed at polycrystalline Au[111] surfaces was studied using time-of-flight secondary-ion mass spectrometry, X-ray photoelectron spectroscopy, and infrared reflectance spectroscopy. Whereas quantum chemical theory calculations show that Al insertion into the C-C, C-H, C-O, and O-H bonds is favorable energetically, it is observed that deposited Al inserts only with the OH SAM to form an -O-Al-H product. This reaction appears to cease prior to complete -OH consumption, and is followed by formation of a few overlayers of a nonmetallic type of phase and finally deposition of a metallic film. In contrast, for the OCH(3) SAM, the deposited Al atoms partition along two parallel paths: nucleation and growth of an overlayer metal film, and penetration through the OCH(3) SAM to the monolayer/Au interface region. By considering a previous observation that a CH(3) terminal group favors penetration as the dominant initial process, and using theory calculations of Al-molecule interaction energies, we suggest that the competition between the penetration and overlayer film nucleation channels is regulated by small differences in the Al-SAM terminal group interaction energies. These results demonstrate the highly subtle effects of surface structure and composition on the nucleation and growth of metal films on organic surfaces and point to a new perspective on organometallic and metal-solvent interactions.


Asunto(s)
Alcoholes/química , Aluminio/química , Éteres/química , Gases , Hidrocarburos/química , Espectrometría de Masas/métodos , Espectrofotometría Infrarroja , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...