Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Carbohydr Polym ; 264: 118011, 2021 Jul 15.
Article En | MEDLINE | ID: mdl-33910715

Veklury™ by Gilead Sciences, Inc., containing antiviral drug, remdesivir (REM) has received emergency authorization in the USA and in Europe for COVID-19 therapy. Here, for the first time, we describe details of the non-covalent, host-guest type interaction between REM and the solubilizing excipient, sulfobutylether-beta-cyclodextrin (SBECD) that results in significant solubility enhancement. Complete amorphousness of the cyclodextrin-enabled REM formulation was demonstrated by X-ray diffraction, thermal analysis, Raman chemical mapping and electron microscopy/energy dispersive spectroscopy. The use of solubilizing carbohydrate resulted in a 300-fold improvement of the aqueous solubility of REM, and enhanced dissolution rate of the drug enabling the preparation of stable infusion solutions for therapy. 2D ROESY NMR spectroscopy provided information on the nature of REM-excipient interaction and indicated the presence of inclusion phenomenon and the electrostatic attraction between anionic SBECD and nitrogen-containing REM in aqueous solution.


Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Excipients/chemistry , beta-Cyclodextrins/chemistry , Adenosine Monophosphate/chemistry , Alanine/chemistry , Antiviral Agents/chemistry , Calorimetry, Differential Scanning , Freeze Drying/methods , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Molecular Docking Simulation , Nanofibers/chemistry , Powders , Solubility , Spectrum Analysis, Raman , X-Ray Diffraction , COVID-19 Drug Treatment
2.
Xenobiotica ; 49(7): 840-851, 2019 Jul.
Article En | MEDLINE | ID: mdl-30022699

The concentrative nucleoside transporters (CNT; solute carrier family 28 (SLC28)) and the equilibrative nucleoside transporters (ENT; solute carrier family 29 (SLC29)) are important therapeutic targets but may also mediate toxicity or adverse events. To explore the relative role of the base and the monosaccharide moiety in inhibitor selectivity we selected compounds that either harbor an arabinose moiety or a cytosine moiety, as these groups had several commercially available drug members. The screening data showed that more compounds harboring a cytosine moiety displayed potent interactions with the CNTs than compounds harboring the arabinose moiety. In contrast, ENTs showed a preference for compounds with an arabinose moiety. The correlation between CNT1 and CNT3 was good as five of six compounds displayed IC50 values within the threefold threshold and one displayed a borderline 4-fold difference. For CNT1 and CNT2 as well as for CNT2 and CNT3 only two of six IC50 values correlated and one displayed a borderline 4-fold difference. Interestingly, of the six compounds that potently interacted with both ENT1 and ENT2 only nelarabine displayed selectivity. Our data show differences between inhibitor selectivities of CNTs and ENTs as well as differences within the CNT family members.


Antiviral Agents , Arabinonucleosides , Equilibrative Nucleoside Transporter 1 , Membrane Transport Proteins , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Arabinonucleosides/chemistry , Arabinonucleosides/pharmacokinetics , Arabinonucleosides/pharmacology , Dogs , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Humans , Madin Darby Canine Kidney Cells , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
3.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1725-35, 2015 Aug.
Article En | MEDLINE | ID: mdl-26249353

ABCG2 is an efflux drug transporter that plays an important role in drug resistance and drug disposition. In this study, the first three-dimensional structure of human full-length ABCG2 analysed by electron crystallography from two-dimensional crystals in the absence of nucleotides and transported substrates is reported at 2 nm resolution. In this state, ABCG2 forms a symmetric homodimer with a noncrystallographic twofold axis perpendicular to the two-dimensional crystal plane, as confirmed by subtomogram averaging. This configuration suggests an inward-facing configuration similar to murine ABCB1, with the nucleotide-binding domains (NBDs) widely separated from each other. In the three-dimensional map, densities representing the long cytoplasmic extensions from the transmembrane domains that connect the NBDs are clearly visible. The structural data have allowed the atomic model of ABCG2 to be refined, in which the two arms of the V-shaped ABCG2 homodimeric complex are in a more closed and narrower conformation. The structural data and the refined model of ABCG2 are compatible with the biochemical analysis of the previously published mutagenesis studies, providing novel insight into the structure and function of the transporter.


ATP-Binding Cassette Transporters/chemistry , Cryoelectron Microscopy , Neoplasm Proteins/chemistry , Protein Structure, Quaternary , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Breast/metabolism , Breast Neoplasms/metabolism , Cryoelectron Microscopy/methods , Crystallization/methods , Female , Humans , Models, Molecular , Neoplasm Proteins/metabolism , Neoplasm Proteins/ultrastructure , Protein Multimerization
4.
Steroids ; 87: 128-36, 2014 Sep.
Article En | MEDLINE | ID: mdl-24928727

Substituted and/or heterocyclic d-homoestrone derivatives were synthetized via the intramolecular cyclization of a δ-alkenyl-d-secoaldehyde, -d-secoalcohol or -d-secocarboxylic acid of estrone 3-benzyl ether. The d-secoalcohol was modified at three sites in the molecule. The in vitro antiproliferative activities of the new d-homo- and d-secoestrone derivatives were determined on HeLa, MCF-7, A431 and A2780 cells through use of MTT assay. d-Homoalcohols 3 and 5 displayed cell line-selective cytostatic effects against ovarian and cervical cell lines, respectively. Two d-secoestrones (6 and 12c) proved to be effective, with IC50 values comparable with those of the reference agent cisplatin. A selected compound (6) was tested by tubulin polymerization assay and its cancer specificity was additionally determined by using noncancerous human fibroblast cells.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Estrone/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Esterification , Estrone/chemical synthesis , Estrone/chemistry , Estrone/metabolism , Estrone/pharmacology , Humans , Microwaves , Molecular Docking Simulation , Protein Multimerization/drug effects , Protein Structure, Quaternary , Tubulin/chemistry , Tubulin/metabolism
5.
ChemMedChem ; 9(8): 1826-37, 2014 Aug.
Article En | MEDLINE | ID: mdl-24838989

Inspired by the core fragment of antibacterial natural products such as streptolydigin, 3-acyltetramic acids and 3-acylpiperidine-2,4-diones have been synthesised from the core heterocycle by direct acylation with the substituted carboxylic acids using a strategy which permits ready access to a structurally diverse compound library. The antibacterial activity of these systems has been established against a panel of Gram-positive and Gram-negative bacteria, with activity mostly against the former, which in some cases is very potent. Data consistent with modes of action against undecaprenylpyrophosphate synthase (UPPS) and/or RNA polymerase (RNAP) for a small subset of the library has been obtained. The most active compounds have been shown to exhibit binding at known binding sites of streptolydigin and myxopyronin at UPPS and RNAP. These systems offer potential for their antibacterial activity, and further demonstrate the use of natural products as biologically validated starting points for drug discovery.


Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Alkyl and Aryl Transferases/antagonists & inhibitors , Alkyl and Aryl Transferases/metabolism , Aminoglycosides/metabolism , Aminoglycosides/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites , Cell Survival/drug effects , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , HEK293 Cells , Humans , Lactones/chemistry , Lactones/metabolism , Lactones/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship
6.
BMC Bioinformatics ; 14: 130, 2013 Apr 15.
Article En | MEDLINE | ID: mdl-23586520

BACKGROUND: Human breast cancer resistance protein (BCRP) is an ATP-binding cassette (ABC) efflux transporter that confers multidrug resistance in cancers and also plays an important role in the absorption, distribution and elimination of drugs. Prediction as to if drugs or new molecular entities are BCRP substrates should afford a cost-effective means that can help evaluate the pharmacokinetic properties, efficacy, and safety of these drugs or drug candidates. At present, limited studies have been done to develop in silico prediction models for BCRP substrates. In this study, we developed support vector machine (SVM) models to predict wild-type BCRP substrates based on a total of 263 known BCRP substrates and non-substrates collected from literature. The final SVM model was integrated to a free web server. RESULTS: We showed that the final SVM model had an overall prediction accuracy of ~73% for an independent external validation data set of 40 compounds. The prediction accuracy for wild-type BCRP substrates was ~76%, which is higher than that for non-substrates. The free web server (http://bcrp.althotas.com) allows the users to predict whether a query compound is a wild-type BCRP substrate and calculate its physicochemical properties such as molecular weight, logP value, and polarizability. CONCLUSIONS: We have developed an SVM prediction model for wild-type BCRP substrates based on a relatively large number of known wild-type BCRP substrates and non-substrates. This model may prove valuable for screening substrates and non-substrates of BCRP, a clinically important ABC efflux drug transporter.


ATP-Binding Cassette Transporters/metabolism , Drug Resistance, Neoplasm/physiology , Models, Biological , Neoplasm Proteins/metabolism , Support Vector Machine , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Breast Neoplasms/drug therapy , Drug Evaluation , Humans , Substrate Specificity
7.
Nucleic Acids Res ; 40(9): 3952-63, 2012 May.
Article En | MEDLINE | ID: mdl-22253018

Bloom's syndrome DNA helicase (BLM), a member of the RecQ family, is a key player in homologous recombination (HR)-based error-free DNA repair processes. During HR, BLM exerts various biochemical activities including single-stranded (ss) DNA translocation, separation and annealing of complementary DNA strands, disruption of complex DNA structures (e.g. displacement loops) and contributes to quality control of HR via clearance of Rad51 nucleoprotein filaments. We performed a quantitative mechanistic analysis of truncated BLM constructs that are shorter than the previously identified minimal functional module. Surprisingly, we found that a BLM construct comprising only the two conserved RecA domains and the Zn(2+)-binding domain (residues 642-1077) can efficiently perform all mentioned HR-related activities. The results demonstrate that the Zn(2+)-binding domain is necessary for functional interaction with DNA. We show that the extensions of this core, including the winged-helix domain and the strand separation hairpin identified therein in other RecQ-family helicases, are not required for mechanochemical activity per se and may instead play modulatory roles and mediate protein-protein interactions.


RecQ Helicases/chemistry , DNA/chemistry , DNA/metabolism , DNA, Single-Stranded/metabolism , Humans , Models, Molecular , Nucleic Acid Conformation , Protein Structure, Tertiary , Rad51 Recombinase/metabolism , Rec A Recombinases/chemistry , RecQ Helicases/metabolism , Zinc/chemistry
8.
Curr Protein Pept Sci ; 13(1): 19-33, 2012 Feb.
Article En | MEDLINE | ID: mdl-22044146

During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here we review the links between disordered proteins and the associated networks, and describe the consequences of local, mesoscopic and global network disorder on changes in protein structure and dynamics. We introduce a new classification of protein networks into 'cumulus-type', i.e., those similar to puffy (white) clouds, and 'stratus-type', i.e., those similar to flat, dense (dark) low-lying clouds, and relate these network types to protein disorder dynamics and to differences in energy transmission processes. In the first class, there is limited overlap between the modules, which implies higher rigidity of the individual units; there the conformational changes can be described by an 'energy transfer' mechanism. In the second class, the topology presents a compact structure with significant overlap between the modules; there the conformational changes can be described by 'multi-trajectories'; that is, multiple highly populated pathways. We further propose that disordered protein regions evolved to help other protein segments reach 'rarely visited' but functionally-related states. We also show the role of disorder in 'spatial games' of amino acids; highlight the effects of intrinsically disordered proteins (IDPs) on cellular networks and list some possible studies linking protein disorder and protein structure networks.


Proteins/chemistry , Proteins/metabolism , Humans , Protein Binding , Protein Conformation , Signal Transduction , Structure-Activity Relationship
9.
PLoS One ; 6(10): e25815, 2011.
Article En | MEDLINE | ID: mdl-21991360

Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening.


ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Models, Molecular , Pharmaceutical Preparations/metabolism , Support Vector Machine , Biological Transport , Crystallography, X-Ray , Databases as Topic , Humans , Internet , Pharmaceutical Preparations/chemistry , Reproducibility of Results , Rhodamines/chemistry
10.
Bioinformatics ; 27(13): 1806-13, 2011 Jul 01.
Article En | MEDLINE | ID: mdl-21593135

MOTIVATION: Human serum albumin (HSA), the most abundant plasma protein is well known for its extraordinary binding capacity for both endogenous and exogenous substances, including a wide range of drugs. Interaction with the two principal binding sites of HSA in subdomain IIA (site 1) and in subdomain IIIA (site 2) controls the free, active concentration of a drug, provides a reservoir for a long duration of action and ultimately affects the ADME (absorption, distribution, metabolism, and excretion) profile. Due to the continuous demand to investigate HSA binding properties of novel drugs, drug candidates and drug-like compounds, a support vector machine (SVM) model was developed that efficiently predicts albumin binding. Our SVM model was integrated to a free, web-based prediction platform (http://albumin.althotas.com). Automated molecular docking calculations for prediction of complex geometry are also integrated into the web service. The platform enables the users (i) to predict if albumin binds the query ligand, (ii) to determine the probable ligand binding site (site 1 or site 2), (iii) to select the albumin X-ray structure which is complexed with the most similar ligand and (iv) to calculate complex geometry using molecular docking calculations. Our SVM model and the potential offered by the combined use of in silico calculation methods and experimental binding data is illustrated.


Pharmaceutical Preparations/metabolism , Serum Albumin/metabolism , Artificial Intelligence , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Serum Albumin/chemistry
11.
ACS Chem Biol ; 6(6): 573-81, 2011 Jun 17.
Article En | MEDLINE | ID: mdl-21344919

Aberrant expression of transcription factors is a frequent cause of disease, yet drugs that modulate transcription factor protein-DNA interactions are presently unavailable. To this end, the chemical tractability of the DNA binding domain of the stem cell inducer and oncogene Sox2 was explored in a high-throughput fluorescence anisotropy screen. The screening revealed a Dawson polyoxometalate (K(6)[P(2)Mo(18)O(62)]) as a direct and nanomolar inhibitor of the DNA binding activity of Sox2. The Dawson polyoxometalate (Dawson-POM) was found to be selective for Sox2 and related Sox-HMG family members when compared to unrelated paired and zinc finger DNA binding domains. [(15)N,(1)H]-Transverse relaxation optimized spectroscopy (TROSY) experiments coupled with docking studies suggest an interaction site of the POM on the Sox2 surface that enabled the rationalization of its inhibitory activity. The unconventional molecular scaffold of the Dawson-POM and its inhibitory mode provides strategies for the development of drugs that modulate transcription factors.


DNA/drug effects , SOXB1 Transcription Factors/antagonists & inhibitors , Tungsten Compounds/pharmacology , Binding Sites/drug effects , DNA/chemistry , Fluorescence Polarization , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , SOXB1 Transcription Factors/metabolism , Structure-Activity Relationship , Surface Properties , Tungsten Compounds/chemistry
12.
Expert Opin Drug Metab Toxicol ; 6(11): 1363-84, 2010 Nov.
Article En | MEDLINE | ID: mdl-20873966

IMPORTANCE OF THE FIELD: The ATP-binding cassette transporter ABCG2 is a well-known major mediator of multi-drug resistance in cancers. Beyond multi-drug resistance, experimental and recent clinical studies demonstrate a role for ABCG2 as a determinant of drug pharmacokinetic, safety and efficacy profiles. AREAS COVERED IN THIS REVIEW: The clinical evidence of the role of ABCG2 in pharmacokinetics and pharmacodynamics is reviewed. Key questions that arise from the perspective of preclinical drug evaluation are addressed, including the structure of ABCG2 and mechanisms of drug-transporter interactions, mechanisms responsible for the polyspecificity of ABCG2, methods suitable for studying drug-ABCG2 interactions in vitro and in silico prediction of ABCG2 substrates and inhibitors. WHAT THE READER WILL GAIN: An update on current knowledge of the importance of ABCG2 in drug disposition with special emphasis on drug development. TAKE HOME MESSAGE: The field of drug-ABCG2 interaction is rapidly advancing and beginning to expand into clinical practice. However, the structural understanding of drug binding and transport by ABCG2 is still incomplete. Incorporation of novel concepts of drug-transporter interactions such as electrostatic funneling might help explain the multispecificity of ABCG2 and enable in silico predictions.


ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Neoplasm Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Biological Transport , Clinical Trials as Topic , Drug Design , Drug Evaluation, Preclinical , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Female , Humans
13.
FASEB J ; 24(11): 4480-90, 2010 Nov.
Article En | MEDLINE | ID: mdl-20631329

Active site loops that are conserved across superfamilies of myosins, kinesins, and G proteins play key roles in allosteric coupling of NTP hydrolysis to interaction with track filaments or effector proteins. In this study, we investigated how the class-specific natural variation in the switch-2 active site loop contributes to the motor function of the intracellular transporter myosin-5. We used single-molecule, rapid kinetic and spectroscopic experiments and semiempirical quantum chemical simulations to show that the class-specific switch-2 structure including a tyrosine (Y439) in myosin-5 enables rapid processive translocation along actin filaments by facilitating Mg(2+)-dependent ADP release. Using wild-type control and Y439 point mutant myosin-5 proteins, we demonstrate that the translocation speed precisely correlates with the kinetics of nucleotide exchange. Switch-2 variants can thus be used to fine-tune translocation speed while maintaining high processivity. The class-specific variation of switch-2 in various NTPase superfamilies indicates its general role in the kinetic tuning of Mg(2+)-dependent nucleotide exchange.


Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Myosin Type V/genetics , Myosin Type V/metabolism , Protein Transport , Actins/metabolism , Animals , Computer Simulation , Magnesium/metabolism , Mice , Models, Molecular , Mutation/genetics , Nucleotides/metabolism , Phosphates/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport/genetics
14.
J Comput Aided Mol Des ; 24(8): 713-7, 2010 Aug.
Article En | MEDLINE | ID: mdl-20521083

Cyclodextrins are cyclic oligosaccharides that are able to form water-soluble inclusion complexes with small molecules. Because of their complexing ability, they are widely applied in food, pharmaceutical and chemical industries. In this paper we describe the development of a free web-service, Cyclodextrin KnowledgeBase: ( http://www.cyclodextrin.net ). The database contains four modules: the Publication, Interaction, Chirality and Analysis Modules. In the Publication Module, almost 50,000 publication details are collected that can be retrieved by text search. In the Interaction and Chirality Modules relevant literature data on cyclodextrin complexation and chiral recognition are collected that can be retrieved by both text and structural searches. Moreover, in the Analysis Module, the geometries of small molecule-cyclodextrin complexes can be predicted using molecular docking tools in order to explore the structures and interaction energies of the inclusion complexes. Complex geometry prediction is made possible by the built-in database of 95 cyclodextrin derivatives, where the 3D structures as well as the partial charges are calculated and stored for further utilization. The use of the database is demonstrated by several examples.


Cyclodextrins/chemistry , Cyclodextrins/metabolism , Knowledge Bases , Animals , Computer-Aided Design , Humans , Ligands , Models, Chemical , Models, Molecular
15.
Bioorg Med Chem ; 17(16): 5796-805, 2009 Aug 15.
Article En | MEDLINE | ID: mdl-19640719

Serotonin type 3 receptors (5-HT(3)R) are members of the ligand gated ion channel receptor family. In this study, the interactions of the agonists serotonin (5-HT) and m-chlorophenylbiguanidine (mCPBG) at the binding site of the 5-HT(3A)R were investigated at an atomic level. Site-directed mutagenesis studies in Loop B and E along with our earlier published results from mutations within Loops A, C, and D provide comprehensive data on the interaction of 5-HT and mCPBG with 5-HT(3A)Rs. Using this data we have constructed a refined homology model of the 5-HT(3A)R that considers all of the available experimental data. 5-HT and mCPBG were docked into the newly constructed homology model and the amino acid residues critical in binding of these agonists were compared and analyzed. Our docking results reveal many similar binding interactions for 5-HT and mCPBG. Namely, residues THR181, TRP183, PHE226, ILE228, TYR234 and GLU129 were all found to play key roles in binding of both 5-HT and mCPBG. However, the results also revealed two important differences that exist between the interactions of the two agonists. In our model, a hydrogen bond is formed between the indole hydrogen of 5-HT and the residue TYR153. This interaction is not present in the case of mCPBG. Conversely, a hydrogen bond exists between SER182 and a protonated nitrogen of mCPBG, which does not exist in 5-HT. Our modeling results were found to be in accordance with experimental data.


Guanidines/chemistry , Serotonin 5-HT3 Receptor Agonists , Serotonin Receptor Agonists/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , Computer Simulation , Guanidines/pharmacology , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/drug effects , Patch-Clamp Techniques , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Serotonin Receptor Agonists/pharmacology , Xenopus laevis
16.
Acta Pharm Hung ; 79(1): 17-21, 2009.
Article Hu | MEDLINE | ID: mdl-19526678

Over the last years, the use of bioinformatics tools such as molecular docking has become an essential part of research focused at prediction of the binding of small molecules to their target proteins. DockingServer offers a web-based, easy to use interface that handles all aspects of molecular docking from ligand and pro-tein set-up through results representation integrating a number of software frequently used in computational chemistry. While its user friendly interface enables docking calculation and results evaluation carried out by researchers coming from all fields of biochemistry, DockingServer also provides full control on the setting of specific parameters of ligand and protein set up and docking calculations for more advanced users. The application can be used for docking and analysis of single ligands as well as for high throughput docking of ligand libraries to target proteins. The use of "DockingServer" is illustrated by the formation of acetaminophene (paracetamol)-CYP2E1 complex.


Computational Biology/methods , Online Systems , Acetaminophen/chemistry , Computational Biology/trends , Cytochrome P-450 CYP2E1/chemistry , Ligands , Models, Molecular , Protein Conformation , Proteins/chemistry
17.
J Cheminform ; 1: 15, 2009 Sep 11.
Article En | MEDLINE | ID: mdl-20150996

BACKGROUND: Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated. RESULTS: The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 A of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method. Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed. CONCLUSION: Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.

18.
Biochim Biophys Acta ; 1780(9): 1070-9, 2008 Sep.
Article En | MEDLINE | ID: mdl-18585438

Methoxychlor undergoes metabolism by cytochrome P450 (CYP) enzymes forming a chiral mono-phenolic derivative (Mono-OH-M) as main metabolite. In the current study, members of the CYP2C family were examined for their chiral preference in Mono-OH-M formation. CYP2C9 and CYP2C19 possessed high enantioselectivity favoring the formation of S-Mono-OH-M; CYP2C3 showed no enantioselectivity, whereas CYP2C5 slightly favored the formation of R-Mono-OH-M. Molecular modeling calculations were utilized in order to explain the observed differences in chiral preference of CYP2C enzymes. Molecular docking calculations could describe neither the existence of chiral preference in metabolism, nor the enantiomer which is preferentially formed. Molecular dynamic calculations were also carried out and were found to be useful for accurate description of chiral preference in biotransformation of methoxychlor by CYP2C enzymes. An in silico model capable of predicting chiral preference in cytochrome P450 enzymes in general can be developed based on the analysis of the stability and rigidity parameters of interacting partners during molecular dynamic simulation.


Computational Biology , Cytochrome P-450 Enzyme System/metabolism , Methoxychlor/chemistry , Methoxychlor/metabolism , Amino Acid Sequence , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Binding Sites , Computer Simulation , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System/chemistry , Heme , Humans , Methylation , Models, Molecular , Molecular Sequence Data , Pharmaceutical Preparations/chemistry , Protein Structure, Secondary , Sequence Alignment , Stereoisomerism , Structural Homology, Protein , Thermodynamics
19.
Biochim Biophys Acta ; 1784(7-8): 1106-14, 2008.
Article En | MEDLINE | ID: mdl-18456008

Human alpha(1)-acid glycoprotein (AAG) is an acute phase component of the plasma, binding numerous drugs and natural compounds with high-affinity. Using circular dichroism (CD) spectroscopy, strong AAG binding of organogold complexes was found, the molecular size and chemical structure of which differ from known AAG binding agents. The 16-membered Au(2)P(4)C(8)O(2) macrocycles interconvert rapidly between two helical forms and produce enantiomeric conformations which are in dynamic equilibrium in solution. AAG binds preferentially one of the chiral conformers as indicated by strong Cotton effects generated by intramolecular exciton coupling between the pairs of hetercyclic chromophores. Lipophilic nature of the guest molecules suggests the dominant contribution of hydrophobic interactions in the AAG binding. Comparison of the main genetic variants of AAG revealed that both the 'F1/S' and 'A' variants bind with high-affinity the gold(I) macrocycles (K(a) approximately 10(6) M(-1)). CD/fluorescence displacement, and fluorescence quenching experiments indicated inclusion of the compounds into the central beta-barrel cavity of AAG of which exact tertiary structure is yet unknown. Molecular dimensions of the gold(I) macrocycles (13 x 14 x 14 A) indicate that the principal ligand binding cavity of both the 'F1/S' and 'A' variants must be larger compared to the models published to date. Based on these findings, a novel homology model of AAG 'F1' variant was constructed using the human neutrophil gelatinase-associated lipocalin as a template. The organogold complexes were successfully docked into the central cavity of this model.


Molecular Probes , Organogold Compounds/chemistry , Orosomucoid/chemistry , Circular Dichroism , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Spectrophotometry, Ultraviolet
20.
J Struct Biol ; 162(1): 63-74, 2008 Apr.
Article En | MEDLINE | ID: mdl-18249138

BCRP (also known as ABCG2, MXR, and ABC-P) is a member of the ABC family that transports a wide variety of substrates. BCRP is known to play a key role as a xenobiotic transporter. Since discovering its role in multidrug resistance, considerable efforts have been made in order to gain deeper understanding of BCRP structure and function. The recent study was aimed at predicting BCRP structure by creating a homology model. Based on sequence similarity with known structures of full-length, NB and TM domain of ABC transporters, TM, NB, and linker regions of BCRP were defined. The NB domain of BCRP was modeled using MalK as a template. Based on secondary structure prediction of BCRP and comparison of the transmembrane connecting regions of known structures of ABC transporters, the TM domain arrangement of BCRP was established and was found to resemble to that of the recently published crystal structure of Sav1866. Thus, an initial alignment of TM domain of BCRP was established using Sav1866 as a template. This alignment was subsequently refined using constrains derived from secondary structure and TM predictions and the final model was built. Finally, the complete homodimer ABCG2 model was generated using Sav1866 as template. Furthermore, known ligands of BCRP were docked to our model in order to define possible binding sites. The results of molecular dockings of known BCRP substrates to the BCRP model were in agreement with recently published experimental data indicating multiple binding sites in BCRP.


ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Amino Acid Sequence , Binding Sites/genetics , Computer Simulation , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
...