Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(1): 502-507, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38081186

RESUMEN

Investigated were the influences of succinimide (SI), 5,5-dimethylhydantoin (DMH), and 3-(hydroxymethyl)-5,5-dimethylhydantoin (HDMH) on the biocidal activity of chlorinated, water-soluble polyamide prepared by the reaction of isopropylamine with poly(styrene-alt-maleic anhydride). The resulting polymer was a negatively charged, water-soluble polymer bearing a carboxylic acid and an isopropylamide moiety on nearly every repeat unit. Subsequent treatment with NaOCl chlorinated the polymers to up to 4.4% Cl while inflicting some polymer chain scission. SI, DMH, or HDMH increased the biocidal activity of polychloramides toward planktonic Escherichia coli and Staphylococcus aureus. Independent solution studies confirmed that oxidative chlorine spontaneously transferred from aqueous polychloramides to small molecules. We concluded that SI, DMH, and HDMH acted as shuttles that extracted oxidative Cl from the polymer chloramides and transported oxidative Cl more efficiently to microbial surfaces. Succinimide was the most effective shuttle. These results warn that some low molecular weight soluble molecules in antimicrobial testing solutions may exaggerate the effectiveness of the polymer or immobilized antimicrobial agents.


Asunto(s)
Antibacterianos , Polímeros , Antibacterianos/farmacología , Peso Molecular , Polímeros/farmacología , Escherichia coli , Agua , Succinimidas
2.
Colloids Surf B Biointerfaces ; 229: 113464, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478543

RESUMEN

The presence of some nonmicrobial chemicals and surfaces, herein called "soils", are known to degrade the performance of biocides, and biocidal assays often include mixtures of materials to mimic the effects of soils. We hypothesized that water-soluble anionic polychloramide biocides were less sensitive to soil interference than cationic polymeric biocides. The relationships between soil composition and antimicrobial polymer biocidal activity were compared for an anionic polychloramide, a cationic polychloramide, and a cationic poly(quaternary ammonium) biocide. The nanoscale soil models individually investigated were polyacrylic acid (PAA), cellulose nanocrystals (CNCs), and bovine serum albumin. The low molecular weight model soils were ammonium chloride, glycine, and succinimide. Three types of soil impacts were identified: 1) sequestration, whereby the soil physically inhibited transport of the biocide to microbes; 2) extraction, whereby the soil reduced or extracted oxidative chlorine, decreasing or eliminating the oxidative chlorine strength; and 3) extraction whereby the biocidal activity increases in the presence of a low molecular weight chemical that carries oxidative Cl from the polymer to the microbes. PAA and CNCs inhibit cationic biocides by sequestration but have little impact on anionic polychloramide. Glycine and BSA extract oxidative chlorine, lowering the biocidal activity of the anionic and cationic polychloramides while not impacting the poly(quaternary ammonium) biocide. Finally, the presence of succinimide increased bacteria deactivation of both anionic and cationic polychloramides. We propose that succinimide extracts oxidative chlorine from the polychloramides and transports it to the bacteria.


Asunto(s)
Compuestos de Amonio , Desinfectantes , Desinfectantes/farmacología , Desinfectantes/química , Suelo , Cloro/farmacología , Polímeros/farmacología , Polímeros/química , Celulosa/farmacología , Bacterias
3.
Biomacromolecules ; 23(9): 3919-3927, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36001031

RESUMEN

Anionic water-soluble polychloramide biocides are of interest because, compared to conventional cationic antimicrobial polymers, anionic biocides are less likely to be sequestered or deactivated by contact with non-microbial soil. Although electrostatics can prevent anionic polymers from adsorbing on microbes, water-soluble polychloramides appear to transfer oxidative chlorine during transient contacts between polymer chains and microbe surfaces. The Chick-Watson model of disinfection kinetics has been modified to account for the contributions of polychloramide molecular weight (MW) and the polychloramide configuration in solution estimated from the overlap concentration, C*, below which dilute polymer chains exist as discrete objects in solution. The key assumption in the modeling was that the transfer rate of oxidative chlorine from polychloramide chains to microbe surfaces impacts the disinfection kinetics. Because both C* and MW are measurable, the polymer-modified Chick-Watson (PCW) model has one less unknown parameter than the two-parameter Chick-Watson equation. The PCW model predicts that lower MW polymers are more effective biocides compared with high MW counterparts. Additionally, polymers with more compressed configurations in solution are more effective biocides. Experimental evidence supports these conclusions. Based on the estimated time scale of bacteria/polymer collisions compared with disinfection kinetics, arguments are made that bacteria surfaces must be contracted many times by polychloramide chains to achieve sufficient Cl transfer to deactivate bacteria.


Asunto(s)
Desinfectantes , Desinfección , Bacterias , Cloro , Desinfectantes/farmacología , Cinética , Polímeros/farmacología , Agua
4.
Colloids Surf B Biointerfaces ; 215: 112487, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35430484

RESUMEN

Our goal was to develop film-forming polymers to extend the antimicrobial lifetimes of cleaned and disinfected surfaces. Antimicrobial polymers were prepared by first reacting poly(ethylene-alt-maleic anhydride) with isopropylamine, partially consuming the anhydride groups, followed by hydrolysis to give water-soluble, highly anionic polyamide PC3. Chlorination with NaOCl gave PC3Cl with oxidative chlorine contents up to 9 wt%. Dried, 5 µm thick, PC3Cl films, gave log 4 reductions in the concentration of Escherichia coli or Staphylococcus aureus exposed to films. A unique feature of the maleic anhydride copolymer platform was the ability to form covalent grafts to surfaces via anhydride reactions. PC3 solution was impregnated into cellulosic filter paper, heated to form ester linkages with cellulose, followed by chlorination with sodium dichloroisocyanurate dihydrate giving grafted PC3Cl. The treated paper (0.3 wt% PC3Cl) gave a log 4 reduction of E. coli concentration in 30 min.


Asunto(s)
Antiinfecciosos , Desinfectantes , Escherichia coli , Anhídridos Maleicos , Polímeros , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA