Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Anim Nutr ; 17: 397-407, 2024 Jun.
Article En | MEDLINE | ID: mdl-38812498

Hermetia illucens (HI) meal is a promising substitute for fish meal (FM) in the feeds of farmed fish. However, the impacts of dietary HI meal on largemouth bass (LMB) remain unknown. In this study, we formulated three isonitrogenous and isolipid diets with 0% (HI0, control), 20% (HI20) and 40% (HI40) of FM substituted by HI meal. A total of 270 juvenile largemouth bass with an initial body weight of 10.02 ± 0.03 g were used (30 fish per tank). After an 80-day feeding trial, the fish fed with the HI40 diet demonstrated decreased growth performance and protein efficiency ratio (PER), and increased liver oxidative indices and lipid accumulation compared to the control (P < 0.05). Transcriptomic analysis revealed the effects of high dietary HI meal on liver gene expression. Consistent with the reduced growth and disturbed liver oxidative status, the upregulated genes were enriched in the biological processes associated with protein catabolism and endoplasmic reticulum (ER) stress; while the downregulated genes were enriched in cellular proliferation, growth, metabolism, immunity and maintenance of tissue homeostasis. Differential metabolites in the liver samples were also identified by untargeted metabolomic assay. The results of joint transcriptomic-metabolomic analyses revealed that the pathways such as one carbon pool by folate, propanoate metabolism and alpha-linolenic acid metabolism were disturbed by high dietary HI meal. In summary, our data revealed the candidate genes, metabolites and biological pathways that account for the adverse effects of high HI meal diet on the growth and health of LMB.

2.
Fish Shellfish Immunol ; 120: 706-715, 2022 Jan.
Article En | MEDLINE | ID: mdl-34954371

The present study was conducted to investigate the effects of yeast culture on the growth, health and microflora of the juvenile largemouth bass fed high-starch diet. The experiment set three isonitrogenous and isolipidic diets, control (high-starch diet), HSY1 (high-starch diet with 1% yeast culture) and HSY3 (high-starch diet with 3% yeast culture). A feeding trial was conducted in largemouth bass juveniles for 8 weeks. The results indicated fish fed with 3% yeast culture not only could improve specific growth rate (SGR), but also significantly decreased hepatic lipid content, hepatic glycogen content, and hepatopancreas somatic index (HSI) compared with the control group (p<0.05). The total superoxide dismutase (T-SOD) and catalase (CAT) activities of HSY3 group significantly increased while malondialdehyde (MDA) content significantly reduced in liver compared with the control group (p<0.05). Meanwhile, the mRNA expression levels of hepatic Sod and Cat were up-regulated (p<0.05), and liver metabolism showed 111 metabolites were significantly changed in HSY3 group, liver lipid metabolism pathway remarkably changed. Besides, the intestinal anti-inflammatory cytokines were significantly up-regulated, and the pro-inflammatory cytokines were significantly down-regulated as the inclusion of yeast culture (p<0.05). Notably, HSY3 group diet up-regulated the expression of Zo-1, Claudin and Occludin in intestine compared with the other groups (p<0.05). Serum d-lactate (D-lac), diamine oxidase (DAO) and lipopolysaccharide (LPS) decreased significantly with the inclusion of yeast culture (p<0.05). Furthermore, the abundance of probiotics (such as Lactobacillus, Bacillus and Bifidobacterium) increased significantly, and the abundance of intestinal potential pathogenic bacteria (Plesiomonas) decreased in HSY3 group (p<0.05). The phenotypic analysis showed that gram-negative bacteria significantly decreased while gram-positive bacteria increased in HSY3 group (p<0.05). All in all, this study revealed that supplementation of 3% yeast culture can improve the growth performance and the health of juvenile largemouth bass, and has the potential to be used as an effective synbiotics for M. salmoides.


Bass , Diet , Microbiota , Saccharomyces cerevisiae , Starch/administration & dosage , Animal Feed/analysis , Animals , Antioxidants , Bass/immunology , Bass/microbiology , Catalase , Cytokines , Diet/veterinary , Intestines/physiology , Liver/physiology , Superoxide Dismutase
...