Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174831, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019278

RESUMEN

Tris(2-chloroethyl) phosphate (TCEP), emerging as a predominant substitute for brominated flame retardants (BFRs), is now increasingly recognized as a prevalent contaminant in aquatic ecosystems. The extent of its reproductive toxicity in aquatic species, particularly in zebrafish (Danio rerio), remains insufficiently characterized. This study subjected zebrafish embryos to various concentrations of TCEP (0, 0.8, 4, 20, and 100 µg/L) over a period of 120 days, extending through sexual maturation, to assess its impact on female reproductive health. Notable reductions in body weight (0.59- and 0.76-fold) and length (0.71- and 0.77-fold) were observed at concentrations of 20 and 100 µg/L, with a concomitant decrease by 0.21- to 0.61-fold in the gonadal somatic index across all treatment groups. The reproductive output, as evidenced by egg production and hatchability, was adversely affected. Histopathological analysis suggested that TCEP exposure impedes ovarian development. Endocrine alterations were also evident, with testosterone and 11-ketotestosterone levels significantly diminished by 0.38- and 0.08-fold at the highest concentration tested, while 17ß-estradiol was elevated by 0.09- to 0.14-fold in all exposed groups. Transcriptomic profiling illuminated numerous differentially expressed genes (DEGs) integral to reproductive processes, including hormone regulation, neuroactive ligand-receptor interactions, oocyte meiosis, and progesterone-mediated maturation pathways. Collectively, these findings indicate that lifelong exposure to TCEP disrupts ovarian development and maturation in female zebrafish, alters gene expression within the hypothalamic-pituitary-gonadal axis, and perturbs sex hormone synthesis, culminating in pronounced reproductive toxicity.


Asunto(s)
Reproducción , Transcriptoma , Contaminantes Químicos del Agua , Pez Cebra , Animales , Femenino , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Organofosfatos/toxicidad , Retardadores de Llama/toxicidad
2.
Artículo en Inglés | MEDLINE | ID: mdl-38423197

RESUMEN

2-ethylhexyl-4-methoxycinnamate (EHMC) is a commonly used UV filter, and is receiving increasing concerns due to its ubiquitous occurrence in a variety of environmental media and potential adverse effects. This study was aimed to assess the ecotoxicological potentials of EHMC on the marine polychaete Perinereis aibuhitensis. To this end, ragworms were exposed to 2, 20, 200 µg/L EHMC for 14 days and multiple toxicological endpoints were investigated. The results showed that EHMC significantly reduced burrowing rate, but did not affect AChE activity. Exposure to EHMC significantly elevated the activities of SOD and CAT and decreased the levels of lipid peroxidation. Besides, the induction of AKP activity indicated a stimulated immune response in the ragworms when exposed to high concentration of EHMC. Furthermore, the upregulated expression of caspase-8 suggested that EHMC might induce apoptosis in ragworms via the death receptor-mediated extrinsic pathway. Our findings highlight the potential environmental risks of EHMC to marine ecosystems.


Asunto(s)
Ecosistema , Poliquetos , Animales , Cinamatos , Poliquetos/metabolismo
3.
Fish Physiol Biochem ; 49(6): 1421-1433, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37950834

RESUMEN

Tris (2-chloroethyl) phosphate (TCEP), a typical organophosphate flame retardant, is of increasingly great concern considering their ubiquitous presence in aquatic environments and potential ecotoxicity. The present work was aimed to investigate the potential growth inhibition and hepatic stress induced by whole life-cycle exposure to TCEP (0.8, 4, 20 and 100 µg/L) in zebrafish. The results revealed that the body length, body mass and hepatic-somatic index (HSI) of zebrafish were significantly declined after exposure to TCEP for 120 days. GPx activity and GSH content were increased in the liver of zebrafish treated with low concentrations (0.8 and 4 µg/L) of TCEP, while exposure to high concentrations (20 and 100 µg/L) of TCEP reduced antioxidative capacity and elevated lipid peroxidation (LPO) levels. Gene transcription analysis demonstrated that the mRNA levels of nrf2 were altered in a similar manner to the transcription of the downstream genes nqo1 and hmox1, suggesting that Nrf2-Keap1 pathway mediated TCEP-induced oxidative stress in zebrafish liver. In addition, TCEP exposure might alleviate inflammatory response through down-regulating transcription of inflammatory cytokines (il-1ß, il-6 and inos), and induce apoptosis via activating the p53-Bax pathway. Moreover, whole life-cycle exposure to TCEP caused a series of histopathological anomalies in zebrafish liver. Overall, our results revealed that lifetime exposure to environmentally relevant concentrations of TCEP could result in growth retardation and induce significant hepatotoxicity in zebrafish.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Retardadores de Llama , Animales , Pez Cebra/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Organofosfatos/toxicidad , Organofosfatos/metabolismo , Fosfatos , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo
4.
Chem Commun (Camb) ; 59(17): 2381-2398, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36723354

RESUMEN

Rechargeable potassium (K) batteries that are of low cost, with high energy densities and long cycle lives have attracted tremendous interest in affordable and large-scale energy storage. However, the large size of the K-ion leads to sluggish reaction kinetics and causes a large volume variation during the ion insertion/extraction processes, thus hindering the utilization of active electrode materials, triggering a serious structural collapse, and deteriorating the cycling performance. Therefore, the exploration of suitable materials/hosts that can reversibly and sustainably accommodate K-ions and host K metals are urgently needed. Electrospun carbon-based materials have been extensively studied as electrode/host materials for rechargeable K batteries owing to their designable structures, tunable composition, hierarchical pores, high conductivity, large surface areas, and good flexibility. Here, we present the recent developments in electrospun CNF-based nanomaterials for various K batteries (e.g., K-ion batteries, K metal batteries, K-chalcogen batteries), including their fabrication methods, structural modulation, and electrochemical performance. This Feature Article is expected to offer guidelines for the rational design of novel electrospun electrodes for the next-generation K batteries.

5.
Mar Pollut Bull ; 185(Pt A): 114313, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327937

RESUMEN

Benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are commonly used organic ultraviolet (UV) filters and are frequently detected in water environments. In the present study, we studied the potential adverse impacts of UV filter exposures in Ruditapes philippinarum by investigating transcriptomic profiles and non-specific immune enzyme activities. Transcriptome analysis showed that more genes were differentially regulated in EHMC-treated group, and down-regulated genes (2009) were significantly more than up-regulated ones (410) at day 7. Function annotation revealed that pathways "immune system", "cell growth and death" and "infectious diseases" were significantly enriched. Generally, combined qPCR and biochemical analyses demonstrated that short-term exposure to low dose of UV filters could activate immune responses, whereas the immune system would be restrained after prolonged exposure. Taken together, the present study firstly demonstrated the immunotoxicology induced by BP-3, 4-MBC and EHMC on R. philippinarum, indicating their potential threats to the survival of marine bivalves.


Asunto(s)
Bivalvos , Transcriptoma , Animales , Bivalvos/genética , Perfilación de la Expresión Génica , Benzofenonas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA