Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1743: 146903, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32445716

RESUMEN

We emulated instances of open traumatic brain injuries (TBI) in a maritime disaster. New Zealand rabbit animal models were used to evaluate the pathophysiological changes in open TBI with and without the influence of artificial seawater. New Zealand rabbits were randomly divided into 3 groups. Control group consisted of only normal animals. Animals in TBI and TBI + Seawater groups underwent craniotomy with dura mater incised and brain tissue exposed to free-fall impact. Afterward, only TBI + Seawater group received on-site artificial seawater infusion. Brain water content (BWC) and permeability of blood-brain barrier (BBB) were assessed. Reactive oxygen species levels were measured. Western blotting and immunofluorescence were employed to detect: apoptosis-related factors Caspase-3, Bax and Bcl-2; angiogenesis-related factors CD31 and CD34; astrogliosis-related factor glial fibrillary acidic protein (GFAP); potential neuron injury indicator neuron-specific enolase (NSE). Hematoxylin & eosin, Masson-trichrome and Nissl stainings were performed for pathological observations. Comparing to Control group, TBI group manifested abnormal neuronal morphology; increased BWC; compromised BBB integrity; increased ROS, Bax, CD31, CD34, Caspase-3 and GFAP expressions; decreased Bcl-2 and NSE expression. Seawater immersion caused all changes, except BWC, to become more significant. Seawater immersion worsens the damage inflicted to brain tissue by open TBI. It aggravates hypoxia in brain tissue, upregulates ROS expression, increases neuron sensitivity to apoptosis-inducing factors, and promotes angiogenesis as well as astrogliosis.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Agua de Mar/efectos adversos , Animales , Modelos Animales de Enfermedad , Inmersión , Conejos
2.
Eur J Radiol ; 70(1): 1-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18353589

RESUMEN

PURPOSE: Functional MR imaging of the human cervical spinal cord was carried out on volunteers during alternated rest and a complex finger tapping task, in order to detect image intensity changes arising from neuronal activity. METHODS: Functional MR imaging data using single-shot fast spin-echo sequence (SSFSE) with echo time 42.4 ms on a 1.5 T GE Clinical System were acquired in eight subjects performing a complex finger tapping task. Cervical spinal cord activation was measured both in the sagittal and transverse imaging planes. Postprocessing was performed by AFNI (Analysis of Functional Neuroimages) software system. RESULTS: Intensity changes (5.5-7.6%) were correlated with the time course of stimulation and were consistently detected in both sagittal and transverse imaging planes of the cervical spinal cord. The activated regions localized to the ipsilateral side of the spinal cord in agreement with the neural anatomy. CONCLUSION: Functional MR imaging signals can be reliably detected with finger tapping activity in the human cervical spinal cord using a SSFSE sequence with 42.4 ms echo time. The anatomic location of neural activity correlates with the muscles used in the finger tapping task.


Asunto(s)
Vértebras Cervicales/fisiología , Potenciales Evocados Motores/fisiología , Dedos/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento/fisiología , Médula Espinal/fisiología , Adulto , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...