Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
BMC Biol ; 22(1): 1, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167069

BACKGROUND: Cell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disorders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mesenchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the development of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be used for detection. However, morphological assessment during MSC production is often subjective and uncertain. New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs. RESULTS: We have developed a successful morphology-based Cascade region-based convolution neural network (Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes with other senescence indicators. CONCLUSIONS: This deep learning has been applied for the first time to detect senescent MSCs, showing promising performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive and real-time morphological image analysis integrated into cell production.


Deep Learning , Mesenchymal Stem Cells , Cell Proliferation , Cellular Senescence , Cells, Cultured
2.
Int J Biol Macromol ; 258(Pt 1): 128729, 2024 Feb.
Article En | MEDLINE | ID: mdl-38086430

Toll-like receptor 5 (TLR5), serving as a sensor of bacterial flagellin, mediates the innate immune response to actively engage in the host's immune processes against pathogen invasion. However, the mechanism underlying TLR5-mediated immune response in fish remains unclear. Despite the presumed cell surface expression of TLR5 member form (TLR5M), its trafficking dynamics remain elusive. Here, we have identified Epinephelus coioides TLR5M as a crucial mediator of Vibrio flagellin-induced cytokine expression in grouper cells. EcTLR5M facilitated the activation of NF-κB signaling pathway in response to flagellin stimulation and exerted a modest influence on the mitogen-activated protein kinase (MAPK)-extracellular regulated kinase (ERK) signaling. The trafficking chaperone Unc-93 homolog B1 (EcUNC93B1) participated in EcTLR5M-mediated NF-κB signaling activation and downstream cytokine expression. In addition, EcUNC93B1 combined with EcTLR5M to mediate its exit from the endoplasmic reticulum, and also affected its post-translational maturation. Collectively, these findings first discovered that EcTLR5M mediated the flagellin-induced cytokine expression primarily by regulating the NF-κB signaling pathway, and EcUNC93B1 mediated EcTLR5M function through regulating its trafficking and post-translational maturation. This research expanded the understanding of fish innate immunity and provided a novel concept for the advancement of anti-vibrio immunity technology.


Bass , Toll-Like Receptor 5 , Animals , Toll-Like Receptor 5/metabolism , NF-kappa B/metabolism , Flagellin , Signal Transduction , Cytokines , Immunity, Innate , Mitogen-Activated Protein Kinase Kinases/metabolism , Fish Proteins/metabolism
3.
Molecules ; 28(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38067435

Due to the narrow therapeutic window and high mortality of ischemic stroke, it is of great significance to investigate its diagnosis and therapy. We employed weighted gene coexpression network analysis (WGCNA) to ascertain gene modules related to stroke and used the maSigPro R package to seek the time-dependent genes in the progression of stroke. Three machine learning algorithms were further employed to identify the feature genes of stroke. A nomogram model was built and applied to evaluate the stroke patients. We analyzed single-cell RNA sequencing (scRNA-seq) data to discern microglia subclusters in ischemic stroke. The RNA velocity, pseudo time, and gene set enrichment analysis (GSEA) were performed to investigate the relationship of microglia subclusters. Connectivity map (CMap) analysis and molecule docking were used to screen a therapeutic agent for stroke. A nomogram model based on the feature genes showed a clinical net benefit and enabled an accurate evaluation of stroke patients. The RNA velocity and pseudo time analysis showed that microglia subcluster 0 would develop toward subcluster 2 within 24 h from stroke onset. The GSEA showed that the function of microglia subcluster 0 was opposite to that of subcluster 2. AZ_628, which screened from CMap analysis, was found to have lower binding energy with Mmp12, Lgals3, Fam20c, Capg, Pkm2, Sdc4, and Itga5 in microglia subcluster 2 and maybe a therapeutic agent for the poor development of microglia subcluster 2 after stroke. Our study presents a nomogram model for stroke diagnosis and provides a potential molecule agent for stroke therapy.


Ischemic Stroke , Stroke , Humans , Ischemic Stroke/diagnosis , Ischemic Stroke/drug therapy , Ischemic Stroke/genetics , Stroke/diagnosis , Stroke/drug therapy , Stroke/genetics , Algorithms , Machine Learning , RNA
4.
Int J Biol Macromol ; 249: 126048, 2023 Sep 30.
Article En | MEDLINE | ID: mdl-37517756

Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKß. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.


Bass , Toll-Like Receptor 5 , Animals , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , NF-kappa B/metabolism , Flagellin/pharmacology , Signal Transduction , I-kappa B Kinase/metabolism
5.
Hum Mol Genet ; 32(19): 2872-2886, 2023 09 16.
Article En | MEDLINE | ID: mdl-37427980

Mandibuloacral dysplasia type A (MADA) is a rare genetic progeroid syndrome associated with lamin A/C (LMNA) mutations. Pathogenic mutations of LMNA result in nuclear structural abnormalities, mesenchymal tissue damage and progeria phenotypes. However, it remains elusive how LMNA mutations cause mesenchymal-derived cell senescence and disease development. Here, we established an in vitro senescence model using induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) from MADA patients with homozygous LMNA p.R527C mutation. When expanded to passage 13 in vitro, R527C iMSCs exhibited marked senescence and attenuation of stemness potential, accompanied by immunophenotypic changes. Transcriptome and proteome analysis revealed that cell cycle, DNA replication, cell adhesion and inflammation might play important roles in senescence. In-depth evaluation of changes in extracellular vesicle (EV) derived iMSCs during senescence revealed that R527C iMSC-EVs could promote surrounding cell senescence by carrying pro-senescence microRNAs (miRNAs), including a novel miRNA called miR-311, which can serve as a new indicator for detecting chronic and acute mesenchymal stem cell (MSC) senescence and play a role in promoting senescence. Overall, this study advanced our understanding of the impact of LMNA mutations on MSC senescence and provided novel insights into MADA therapy as well as the link between chronic inflammation and aging development.


Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , MicroRNAs , Humans , Multiomics , Biomarkers , MicroRNAs/genetics , Lamin Type A/genetics
6.
Cells ; 11(23)2022 Nov 22.
Article En | MEDLINE | ID: mdl-36496972

Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.


Induced Pluripotent Stem Cells , Infertility , Primary Ovarian Insufficiency , Female , Humans , Primary Ovarian Insufficiency/therapy , Aging
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3738-3741, 2021 11.
Article En | MEDLINE | ID: mdl-34892049

Induced pluripotent stem cells (iPSCs) have huge potential in regenerative medicine research and industrial applications. However, building automatic method without using cell staining technique for iPSCs identification is an important challenge. To improve the efficiency of producing iPSCs, we build an accurate and noninvasive iPSCs colonies detection method via ensemble Yolo network based on the self-collected bright-field microscopy images. Meanwhile, test-time augmentation (TTA) is leveraged to further improve the detection result of our iPSCs colonies detection method. Extensive experimental results on our dataset demonstrate that our method obtains quite favorable detection performance with the highest F1 score of 0.867 and the highest mean average precision score of 0.898, which outperforms most mainstream methods.


Induced Pluripotent Stem Cells , Regenerative Medicine
8.
Comput Methods Programs Biomed ; 208: 106235, 2021 Sep.
Article En | MEDLINE | ID: mdl-34237516

BACKGROUND AND OBJECTIVE: Induced pluripotent stem cells (iPSCs) have great potential as the basis of regenerative medicine. In this paper, we propose an automatic quality evaluation model based on multi-source feature ensemble learning to divide the iPSC colonies into three categories: good, medium and bad. METHODS: First, we obtained iPSCs samples using a Sendai virus reprogramming method. Second, we collected the bright field-images of iPSC colonies and processed them with adaptive gamma transform and data enhancement. The evaluation for the iPSC colony quality was further verified with living cell fluorescent staining, currently accepted as the optimal biological method. Third, multi-source features were extracted using three deep convolutional neural networks (DCNNs) and four traditional feature descriptors. Finally, we utilized a support vector machine (SVM) to perform classification. Before feeding into the SVM, the features were processed by principal component analysis algorithm to save computational cost and training time. RESULTS: Experimental results on the collected iPSC dataset (46,500 images) show that the proposed method could obtain 95.55% classification accuracy. CONCLUSIONS: Our study could provide a method to efficiently and quickly judge the biological quality of a single iPSC colony or populations and facilitate the large-scale iPSC manufacturing.


Induced Pluripotent Stem Cells , Algorithms , Neural Networks, Computer , Support Vector Machine
9.
Dev Comp Immunol ; 114: 103837, 2021 01.
Article En | MEDLINE | ID: mdl-32841623

Toll-like receptors (TLRs) are major pattern recognition receptors (PRRs) that recognize multiple pathogen-associated molecular patterns (PAMPs) through the leucine-rich repeat (LRR) domain and mount effective immune responses. Vibrio parahaemolyticus is the main pathogen that causes vibriosis in aquatic animals, yet the mechanisms of its recognition by innate immune system in teleost fish remain unknown. Here, the results reveal that TLR13 in orange-spotted grouper (Epinephelus coioides) (EcTLR13) recognizes a conserved 23S ribosomal RNA (23S rRNA) sequence in V. parahaemolyticus, and the 13-nucleotide motif near the 23S rRNA ribozyme activation site (VP13) acts as a PAMP. After challenge with RNA and 23S rRNA from V. parahaemolyticus and with the synthetic oligoribonucleotide VP13, the expression of EcTLR13 in grouper spleen cells (GS cells) was significantly increased. EcTLR13-knockdowned GS cells were stimulated with the same stimulants as listed above, the expression of IL-6, IL-12, IL-1ß and TNFα was significantly reduced. RNA-protein immunoprecipitation revealed that VP13 could directly bind to EcTLR13. The dual-luciferase reporter assay also showed that EcTLR13 enhanced the fluorescence activity of IFNß rather than that of NF-κB when the cells were challenged with RNA from V. parahaemolyticus or with synthetic VP13. Our study established the mechanism of fish TLR13-mediated recognition of microbial products during V. parahaemolyticus infection.


Bass/immunology , Fish Diseases/immunology , Fish Proteins/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , RNA, Ribosomal, 23S/metabolism , Toll-Like Receptors/metabolism , Vibrio Infections/immunology , Vibrio parahaemolyticus/physiology , Animals , Cell Line , Fish Proteins/genetics , Gene Expression Regulation , Immunity, Innate , Immunomodulating Agents , Protein Binding , RNA, Catalytic/genetics , RNA, Ribosomal, 23S/genetics , Toll-Like Receptors/genetics
10.
Fish Shellfish Immunol ; 104: 537-544, 2020 Sep.
Article En | MEDLINE | ID: mdl-32470508

Interferon-γ (IFNγ), a type II interferon, is essential to host resistance against various infections. Unlike other vertebrates, fish have two types of IFNγs, IFNγ1 (also named IFNγ-rel) and IFNγ2. MicroRNAs (miRNAs) regulate multiple biological processes by suppressing mRNA translation or inducing mRNA degradation. Among them, miR-29 can directly target IFNγ and affact innate and adaptive immune responses in mice. There are five members of the miR-29 family in orange-spotted grouper (Epinephelus coioides), which share the same miRNA seed region. However, whether miR-29 directly targets E. coioides IFNγs and regulate IFNγ production is still unknown. In the present study, the negative correlation between miR-29b and both IFNγs in immune tissues of healthy E. coioides and grouper spleen cells (GS cells) stimulated with LPS or poly I:C was demonstrated. Moreover, dual-luciferase reporter assays and western blotting were performed to demonstrate that miR-29b suppressed E. coioides IFNγ production. Studies of NO production in GS cells after miR-29b transfection revealed that miR-29b overexpression affected NO production through the downregulation of IFNγ expression. Taken together, our results suggest that miR-29b may directly target E. coioides IFNγs and modulate IFNγ-mediated innate immune responses by suppressing E. coioides IFNγs production.


Bass/genetics , Bass/immunology , Immunity, Innate/genetics , Interferon-gamma/metabolism , MicroRNAs/immunology , Animals , Lipopolysaccharides/pharmacology , Poly I-C/pharmacology
11.
Fish Shellfish Immunol ; 101: 159-167, 2020 Jun.
Article En | MEDLINE | ID: mdl-32194248

Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα) plays crucial roles in regulating activation of nuclear factor kappa-B (NF-κB) in response to pathogens infections. Here, we cloned and identified IKKα gene of orange-spotted grouper (Epinephelus coioides), named as EcIKKα. The gene transcript contained a 2262 bp open reading frame, which encoded 753 amino acids. The typically conserved IKKα structure, including serine kinase domain (KD), leucine chain (LZ) structure, helix-loop-helix (HLH) motif and IKKß-NEMO-binding domain, was identified in EcIKKα. Phylogenetic analysis suggested that EcIKKα had the closest relationship with large yellow croaker (Larimichthy crocea) IKKα. Ecikkα was ubiquitously expressed in all tissues tested and the highest expression level was in ovary. After lipopolysaccharide (LPS), flagellin, polyinosinic-polycytidylic acid (poly I:C), polyadenylic-polyuridylic acid (poly A:U), and Vibrio parahaemolyticus stimulation, the expression of Ecikkα increased in grouper spleen (GS) cells. In the luciferase assay, NF-κB-luc activity was significantly up-regulated when human embryonic kidney 293T (HEK 293T) cells were transfected with EcIKKα plasmid. Moreover, overexpression of EcIKKα significantly increased LPS- and flagellin-induced proinflammatory cytokines (interleukin-6 (il-6) and tumor necrosis factor-α (tnf-α)) expression, but did not significantly affect poly I:C- and poly A:U-induced cytokines (il-6 and tnf-α) expression. Overall, these results suggested that EcIKKα functions like that of mammals to activate NF-κB, and it could be involved in host defense against invading pathogens.


Bass/genetics , Bass/immunology , Fish Diseases/immunology , Gene Expression Regulation/immunology , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Immunity, Innate/genetics , Amino Acid Sequence , Animals , Base Sequence , Cytokines/metabolism , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression/immunology , Gene Expression Profiling/veterinary , I-kappa B Kinase/chemistry , NF-kappa B/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phylogeny , Sequence Alignment/veterinary , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio parahaemolyticus/physiology
12.
Fish Shellfish Immunol ; 98: 262-270, 2020 Mar.
Article En | MEDLINE | ID: mdl-31899357

Scavenger receptors play a central role in defending against infectious diseases in mammals. However, the function of SRECII remains unknown in teleost fish. In this study, type F scavenger receptor expressed by endothelial cells-II (SRECII) cDNA sequence was first identified from Epinephelus coioides, named EcSRECII, which contained an N-terminal signal peptide, eight EGF/EGF-like cysteine-rich motifs and a C-terminal low-complexity region. The gene location maps revealed that EcSRECII has the conservation of synteny among selected species. Subcellular localization showed that EcSRECII was mainly located in the cytoplasm in HEK293T cells and GS cells. In healthy E. coioides, EcSRECII mRNA was highly expressed in spleen, skin, gill, thymus and head kidney. The relative EcSRECII mRNA expression after Vibrio parahaemolyticus infection was significantly up-regulated at 12 h in spleen, head kidney and thymus, but downregulated at 1 d in skin and reduced at 3 d and 1 w in spleen. Furthermore, overexpression of EcSRECII activated NF-κB and IFN-ß signaling pathway in vitro. Taken together, these results indicated that EcSRECII could be as the potential pathogen recognition receptor for involving in bacterial infection by regulating innate immunity responses in E. coioides.


Bass/microbiology , Endothelial Cells/metabolism , Fish Proteins/metabolism , Scavenger Receptors, Class F/metabolism , Vibrio parahaemolyticus/physiology , Animals , Bass/immunology , Fish Proteins/genetics , HEK293 Cells , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Phylogeny , Protein Domains , Scavenger Receptors, Class F/genetics , Signal Transduction/immunology , Synteny , Tissue Distribution , Transcriptional Activation
13.
Fish Shellfish Immunol ; 93: 589-596, 2019 Oct.
Article En | MEDLINE | ID: mdl-31351112

Toll-like receptors (TLRs) as essential pattern recognition receptors in innate immunity, can recognize pathogens and trigger immune response to eliminate invading pathogens. MicroRNAs regulates multiple biological processes by suppressing mRNA translation or resulting in mRNA degradation. MiR-182 has previously been implicated in DNA repair, disease and cancer aspects. The potential role of miR-182-3p in TLR signaling pathway against pathogens is unclear. In this study, we found that the expression of miR-182-3p was up-regulated after Vibrio parahaemolyticus flagellin stimulation in grouper spleen (GS) cells, and negatively correlated with the expression of orange-spotted grouper (Epinephelus coioides) TLR5M (EcTLR5M). Then we found that miR-182-3p could directly target EcTLR5M by using bioinformatic analysis and dual-luciferase reporter assay. Dual-luciferase reporter assay also showed that miR-182-3p down-regulated the wild-type EcTLR5M 3'UTR in luciferase activity rather than the mutant group in HEK 293T cells. We further verified the effect of miR-182-3p on the activation of Nuclear factor-κB (NF-κB) signaling pathway, and found that miR-182-3p inhibitors significantly augmented flagellin-induced NF-κB phosphorylation. Additionally, we also demonstrated that the increased expression of miR-182-3p significantly suppressed the flagellin-induced EcTLR5M, pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) mRNA expression. And the endogenous miR-182-3p knockdown experiments reversely verified the regulatory effect of miR-182-3p. These results suggested that miR-182-3p post-transcriptionally controls EcTLR5M expression and thereby suppresses the expression of pro-inflammatory cytokines. This study is the first to demonstrate that miR-182-3p suppresses pro-inflammatory cytokines expression by regulating the TLR signaling pathway.


Cytokines/genetics , Fish Proteins/genetics , Gene Expression Regulation/immunology , MicroRNAs/genetics , Toll-Like Receptor 5/genetics , Animals , Bass , Cytokines/immunology , Fish Proteins/immunology , MicroRNAs/immunology , Toll-Like Receptor 5/immunology
14.
Fish Shellfish Immunol ; 87: 573-581, 2019 Apr.
Article En | MEDLINE | ID: mdl-30721777

Vibrio parahaemolyticus is the major pathogen of vibriosis in aquatic animals and causes inflammation that may be related to tissue damage. Here, we have established a V. parahaemolyticus flagellin stimulation model using grouper spleen (GS) cell line. Purified V. parahaemolyticus flagellin was used to stimulate GS cells. Our results showed that the mRNA levels of orange-spotted grouper (Epinephelus coioides) toll-like receptor 5M (EcTLR5M), EcTLR5S and downstream cytokines, such as interferon-γ2 (IFN-γ2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were all significantly increased after stimulation with V. parahaemolyticus flagellin in GS cells. Gene silencing of the EcTLR5M and EcTLR5S in GS cells by using small interfering RNA resulted in suppression of the V. parahaemolyticus flagellin-induced cytokines expression. We further demonstrated that activation of both mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) were required for cytokines expression. We observed that the phosphorylation of NF-κB inhibitor-α (IκBα), extracellular signal-regulated kinase (ERK) and p38 were induced following treatment with flagellin. Additionally, most of p65, a NF-κB subunit, was found to translocate to the nucleus after 60 min stimulation. Overall, our results suggest that V. parahaemolyticus flagellin influences cytokines expression, such as IFN-γ2, IL-6 and TNF-α, via EcTLR5s recognition and MAPKs/NF-κB signaling pathway activation in GS cells.


Bass , Fish Diseases/immunology , Fish Proteins/genetics , Flagellin/metabolism , Vibrio Infections/veterinary , Vibrio parahaemolyticus/physiology , Vibrio parahaemolyticus/pathogenicity , Animals , Cytokines/genetics , Fish Diseases/microbiology , Gene Expression , Signal Transduction , Toll-Like Receptor 5/genetics , Vibrio Infections/immunology , Vibrio Infections/microbiology
15.
Article En | MEDLINE | ID: mdl-29535680

Interferon gamma (IFNγ) is a Th1 cytokine that is critical for innate and adaptive immunity. Toll-like receptors (TLRs) signaling pathways are critical in early host defense against invading pathogens. miR-146a has been reported to participate in the regulation of host immunity. The known mechanisms of integrations between the IFNγ and TLR signaling pathways are incompletely understood, especially in teleosts. In this study, orange-spotted grouper (Epinephelus coioides) IFNγ1 and IFNγ2, their biological activities, especially their involvements in TLR pathway, were explored. We identified and cloned two IFNγ genes of E. coioides, namely EcIFNγ1 and EcIFNγ2. The produced recombinant E. coioides IFNγ1 (rEcIFNγ1) and IFNγ2 (rEcIFNγ2) proteins showed functions, which are similar to those of other bony fishes, such as enhancing nitric oxide responses and respiratory burst response. rEcIFNγ2 could regulate TLR pathway by enhancing the promoter activity of miR-146a upstream sequence and thus increasing the expression level of miR-146a, which possibly targets TNF receptor-associated factor 6 (TRAF6), a key adapter molecule in TLR signaling pathway. Taken together, these findings unravel a novel regulatory mechanism of anti-inflammatory response by IFNγ2, which could mediate TLR pathway through IFNγ2-miR-146a-TRAF6 negative regulation loop. It is suggested that IFNγ2 may provide a promising therapeutic, which may help to fine tune the immune response.

16.
Dev Comp Immunol ; 81: 8-18, 2018 04.
Article En | MEDLINE | ID: mdl-29097235

Toll-like receptors (TLRs) are important innate immune receptors that recognize multiple pathogen-associated molecular patterns (PAMPs) and activate the immune responses to resist the invasion of pathogens. Many TLRs need assistance from trafficking chaperones to transport to the specific cell compartments and then are processed before they are activated. In this study, we identified an important trafficking chaperone, Unc-93 homolog B1 (unc93b1), from the Epinephelus coioides (orange-spotted grouper). The deduced protein sequence of Eco.unc93b1 was 632 amino acids, containing 12 transmembrane domains, consistent with other UNC93B1 proteins from other species. Phylogenetic analysis showed that Eco.Unc93b1 was clustered with teleost Unc93b1 and had the closest relationship with Larimichthys crocea (large yellow croaker) Unc93b1. Eco.unc93b1 was expressed the highest in the spleen, and its protein was co-localized with the endoplasmic reticulum and early endosomes in both human embryonic kidney 293T cells and grouper spleen cells (GS cells). Moreover, the stimulation of lipopolysaccharide (LPS), high-molecular-weight poly (I:C) (HMW), imidazoquinoline (R848), polyadenylic-polyuridylic acid (poly AU), and 19-mer Staphylococcus aureus 23S rRNA-derived oligoribonucleotide (ORN Sa 19) promoted the mRNA expression of unc93b1 in GS cells with different patterns. Furthermore, the cytokine expression induced by these PAMPs was suppressed, while Eco.unc93b1 was knocked down, by small interfering RNA. In conclusion, these results suggest that Eco.unc93b1 plays an essential role in several PAMP-induced immune responses.


Cytokines/metabolism , Fish Proteins/genetics , Fishes/immunology , Membrane Transport Proteins/genetics , Spleen/physiology , Animals , Biological Evolution , Cloning, Molecular , Fish Proteins/metabolism , HEK293 Cells , Humans , Immunity, Innate , Lipopolysaccharides/immunology , Membrane Transport Proteins/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Phylogeny , Poly I-C/immunology , RNA, Small Interfering/genetics , Toll-Like Receptors/metabolism
17.
Fish Shellfish Immunol ; 56: 388-396, 2016 Sep.
Article En | MEDLINE | ID: mdl-27426523

Vibriosis is the most common bacterial diseases and brings great economic loss on aquaculture. Vibrio parahaemolyticus (V. parahaemolyticus), a gram-negative bacterium, has been identified as one main pathogens of Vibriosis. The pathogenic mechanism of V. parahaemolyticus is not entirely clear now. In our study, a model of V. parahaemolyticus infection of green-spotted puffer fish (Tetraodon nigroviridis) was established. T. nigroviridis were injected intraperitoneally (i.p.) with 200 µL of V. parahaemolyticus (8 × 10(10) CFU/mL). V. parahaemolyticus infection caused 64% mortality and infected some organs of T. nigroviridis. Histopathology studies revealed V. parahaemolyticus infection induced tissue structural changes, including adipose hollow space in the liver. Immunohistochemistry showed V. parahaemolyticus were present in infected tissue such as liver, head kidney and spleen. In livers of T. nigroviridis infected by V. parahaemolyticus, the alkaline phosphatases (ALP) activity first gradually increased and then backed to normal level, a trend that was on the contrary to the expression profile of the miR-29b. Quantitative real-time PCR analysis showed that the expression level of TLR1, TLR2, TLR5, TLR9, TLR21, NOD1, NOD2 and IL-6 in response to V. parahaemolyticus infection decreased compared to that of non-infected fish. The establishment of the T. nigroviridis model of V. parahaemolyticus infection further confirmed V. parahaemolyticus spreads through the blood circulation system primary as an extracellular pathogen. Meanwhile, liver is an important target organ when infected by V. parahaemolyticus. miR-29b in liver was involved in the progress of liver steatosis during V. parahaemolyticus infection. Moreover, V. parahaemolyticus infection in vivo may have an effect of immunosuppression on host.


Disease Models, Animal , Fish Diseases/microbiology , Fish Proteins/genetics , Receptors, Pattern Recognition/genetics , Tetraodontiformes , Vibrio Infections/veterinary , Animals , Fish Diseases/genetics , Fish Diseases/immunology , Fish Proteins/metabolism , Host-Pathogen Interactions , Liver Diseases/enzymology , Liver Diseases/microbiology , Liver Diseases/pathology , Liver Diseases/veterinary , Receptors, Pattern Recognition/metabolism , Vibrio Infections/genetics , Vibrio Infections/immunology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/physiology
...