Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Chromatogr A ; 1728: 465034, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824842

RESUMEN

Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Compuestos Orgánicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Porosidad , Cromatografía/métodos
2.
Medicine (Baltimore) ; 103(23): e38503, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847664

RESUMEN

The aim of this study was to construct a classification model for the automatic diagnosis of pediatric supracondylar humerus fractures using radiomics-based machine learning. We retrospectively collected elbow joint Radiographs of children aged 3 to 14 years and manually delineated regions of interest (ROI) using ITK-SNAP. Radiomics features were extracted using pyradiomics, a python-based feature extraction tool. T-tests and the least absolute shrinkage and selection operator (LASSO) algorithm were used to further select the most valuable radiomics features. A logistic regression (LR) model was trained, with an 8:2 split into training and testing sets, and 5-fold cross-validation was performed on the training set. The diagnostic performance of the model was evaluated using receiver operating characteristic curves (ROC) on the testing set. A total of 411 fracture samples and 190 normal samples were included. 1561 features were extracted from each ROI. After dimensionality reduction screening, 40 and 94 features with the most diagnostic value were selected for further classification modeling in anteroposterior and lateral elbow radiographs. The area under the curve (AUC) of anteroposterior and lateral elbow radiographs is 0.65 and 0.72. Radiomics can extract and select the most valuable features from a large number of image features. Supervised machine-learning models built using these features can be used for the diagnosis of pediatric supracondylar humerus fractures.


Asunto(s)
Fracturas del Húmero , Aprendizaje Automático , Humanos , Niño , Fracturas del Húmero/diagnóstico por imagen , Preescolar , Estudios Retrospectivos , Adolescente , Masculino , Femenino , Articulación del Codo/diagnóstico por imagen , Curva ROC , Radiografía/métodos , Algoritmos , Radiómica
3.
Reprod Sci ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871967

RESUMEN

We explore the interaction between estrogen and PCSK9 and their collective impact on lipid metabolism, especially concerning the regulation of low-density lipoprotein receptor levels. Utilizing both animal and cellular models, including ovariectomized mice and HepG2 cell lines, we demonstrate that estrogen deficiency leads to a disruption in lipid metabolism, characterized by elevated levels of total cholesterol and LDL-C. The study commences with mice undergoing ovariectomy, followed by a diet regimen comprising either high-fat diet or normal feed for a four-week duration. Key assessments include analyzing lipid metabolism, measuring PCSK9 levels in the bloodstream, and evaluating hepatic low-density lipoprotein receptor expression. We will also conduct correlation analyses to understand the relationship between PCSK9 and various lipid profiles. Further, a subset of ovariectomized mice on high-fat diet will undergo treatment with either estrogen or PCSK9 inhibitor for two weeks, with a subsequent re-evaluation of the earlier mentioned parameters. Our findings reveal that estrogen inhibits PCSK9-mediated degradation of low-density lipoprotein receptor, a process crucial for maintaining lipid homeostasis. Through a series of experiments, including immunohistochemistry and western blot analysis, we establish that PCSK9 is involved in lipid metabolism disorders caused by estrogen deficiency and that estrogen regulates PCSK9 and low-density lipoprotein receptor at post-transcriptional level. The study provides a mechanism for the involvement of PCSK9 in elucidating the disorders of lipid metabolism caused by estrogen deficiency due to perimenopause and ovarian decline.

4.
Talanta ; 276: 126284, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38781914

RESUMEN

In this work, sulfhydryl (SH) functionalized magnetic covalent organic framework (COF) was synthesized by using 4-aldehyde phenyl butadiyne (DEBD) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as the monomers and ethanedithiol as the modifier, with the aid of thiol-alkyne "click" reaction. The prepared Fe3O4@COFTAPB-DEBD@SH exhibited relatively strong magnetism (32.8 emu g-1), good stability and selectivity to target analytes with a high sulfhydryl content (0.24 mmol g-1). Based on Fe3O4@COFTAPB-DEBD@SH, a method combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the quantitative analysis of trace metals. Under the optimal conditions, the method merited fast desorption kinetics (<2 min), adsorption kinetics (<20 min), fast phase separation (<1 min), high enrichment factor (100), and the detection limits for Cd, Hg, Pb and Bi were determined to be 1.18, 0.51, 4.91 and 0.39 ng L-1, respectively. A good resistance to complex matrices was demonstrated for the method in the analysis of soil, atmospheric particles and simulated pulmonary fluids samples. Certified reference materials (coal fly ash GBW08401 and soil GBW07427) were employed to validate the accuracy of the method. Four target metals in the range of 12.9-215 ng L-1, 0.06-24.6 µg g-1 and 0.52-33.1 ng m-3 were found in local water, soil and atmospheric particulates (PM), respectively. Additionally, artificial lysosome solution and gamble's solution were used to simulate human pulmonary fluid and the bioaccessibility of Cd, Hg, Pb and Bi in PM2.5 was evaluated to be 58.6-73.1 % and 1.3-7.1 %, respectively.


Asunto(s)
Metales Pesados , Metales Pesados/análisis , Metales Pesados/química , Estructuras Metalorgánicas/química , Contaminantes del Suelo/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Suelo/química , Límite de Detección , Espectrometría de Masas/métodos , Material Particulado/análisis , Material Particulado/química , Extracción en Fase Sólida/métodos , Disponibilidad Biológica
5.
J Colloid Interface Sci ; 669: 23-31, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703579

RESUMEN

Although ordered porous carbon materials (PCMs) have shown promising potential in the field of electromagnetic wave absorption (EWA), creating multifunctional PCMs with outstanding microwave absorption performance remains a significant challenge. Herein, ordered porous carbon aerogels loaded with pea-pod-like nitrogen-doped carbon nanotubes (CNTs) were fabricated via orientation freeze-drying followed by high-temperature pyrolysis. The optimized aerogel exhibits extraordinary EWA performance with a broad effective absorption bandwidth of 7.68 GHz and exceptionally strong absorption of -91.58 dB at a low filling ratio of only 3 wt%, which is the largest absorption strength among all known aerogels to date. The exceptional EWA performance is attributed to the synergistic effect of abundant loss mechanisms resulting from a unique pod-like structure in ordered porous carbon aerogel, where nitrogen-doped CNTs encapsulate magnetic alloy nanoparticles. Optimized aerogel exhibits superior compressive elasticity, thermal insulation, and light weight, laying the groundwork for designing practical next-generation EWA materials.

6.
J Adv Res ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810909

RESUMEN

INTRODUCTION: Transposon plays a vital role in cotton genome evolution, contributing to the expansion and divergence of genomes within the Gossypium genus. However, knowledge of transposon activity in modern cotton cultivation is limited. OBJECTIVES: In this study, we aimed to construct transposon-related variome within Gossypium genus and reveal role of transposon-related variations during cotton cultivation. In addition, we try to identify valuable transposon-related variations for cotton breeding. METHODS: We utilized graphical genome construction to build up the graphical transposon-related variome. Based on the graphical variome, we integrated t-test, eQTL analysis and Mendelian Randomization (MR) to identify valuable transposon activities and elite genes. In addition, a convolutional neural network (CNN) model was constructed to evaluate epigenomic effects of transposon-related variations. RESULTS: We identified 35,980 transposon activities among 10 cotton genomes, and the diversity of genomic and epigenomic features was observed among 21 transposon categories. The graphical cotton transposon-related variome was constructed, and 9,614 transposon-related variations with plasticity in the modern cotton cohort were used for eQTL, phenotypic t-test and Mendelian Randomization. 128 genes were identified as gene resources improving fiber length and strength simultaneously. 4 genes were selected from 128 genes to construct the elite gene panel whose utility has been validated in a natural cotton cohort and 2 accessions with phenotypic divergence. Based on the eQTL analysis results, we identified transposon-related variations involved in cotton's environmental adaption and human domestication, providing evidence of their role in cotton's adaption-domestication cooperation. CONCLUSIONS: The cotton transposon-related variome revealed the role of transposon-related variations in modern cotton cultivation, providing genomic resources for cotton molecular breeding.

7.
World J Clin Cases ; 12(8): 1416-1421, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38576817

RESUMEN

BACKGROUND: Epidural analgesia is the most effective analgesic method during labor. Butorphanol administered epidurally has been shown to be a successful analgesic method during labor. However, no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor. AIM: To assess butorphanol's safety and efficacy for epidural labor analgesia. METHODS: The PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure, and Google Scholar databases will be searched from inception. Other types of literature, such as conference abstracts and references to pertinent reviews, will also be reviewed. We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor. There will be no language restrictions. The primary outcomes will include the visual analog scale score for the first stage of labor, fetal effects, and Apgar score. Two independent reviewers will evaluate the full texts, extract data, and assess the risk of bias. Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot, and heterogeneity will be evaluated using the Cochran Q test, P values, and I2 values. Meta-analysis, subgroup analysis, and sensitivity analysis will be performed using RevMan software version 5.4. This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Protocols statement, and the PRISMA statement will be used for the systematic review. RESULTS: This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor. CONCLUSION: To support clinical practice and development, this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.

8.
Anal Chim Acta ; 1304: 342554, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637038

RESUMEN

BACKGROUND: Many proteins with thiol groups can bind with trivalent arsenic which are termed as arsenic binding proteins, thus change their physiological functions. Therefore, it is vital to analyze the arsenic binding proteins in cells. The Pull-Down strategy based on biotinylated phenylarsenic acid (Bio-PAO(III)) probes is an effective way for analysis of arsenic binding proteins. In this strategy, streptavidin magnetic beads (SA-MBs) was applied to capture the arsenic binding proteins conjugating with Bio-PAO(III) probe. However, strong interaction between SA and biotin makes the elution of arsenic binding proteins not easy. RESULTS: We developed a novel affinity separation strategy to address the challenge of eluting arsenic binding proteins, a key issue with the existing Bio-PAO(III) Pull-Down method. By employing magnetic beads modified with Nα-Bis(carboxymethyl)-l-lysine (NTA-Lys), polyhistidine-tag (His6-Tag), and SA (MB-NTA(Ni)-His6-SA), we established a more efficient purification process. This innovative approach enables selective capture of arsenic binding proteins in HepG2 cells labeled by Bio-PAO(III) probes, facilitating gentle digestion by trypsin for precise identification through capillary high performance liquid chromatography (Cap HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). What is more, the magnetic beads can be regenerated by using imidazole as the eluent, and the obtained MB-NTA(Ni) can be reloaded with His6-SA for next use. Our method successfully identified 41 arsenic binding proteins, including those involved in cytoskeletal structure, heat shock response, transcriptional regulation, DNA damage repair, redox state regulation, mitochondrial dehydrogenase function, and protein synthesis and structure. SIGNIFICANCE: This work contributes to a more comprehensive understanding of the toxic mechanisms of arsenic, potentially providing valuable insights for the prevention or treatment of arsenic-related diseases.


Asunto(s)
Arsénico , Arsénico/análisis , Proteínas Portadoras , Espectrometría de Masas en Tándem , Histidina/química , Fenómenos Magnéticos
9.
Anal Chem ; 96(16): 6329-6336, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597405

RESUMEN

The simultaneous discrimination of multiple homologous sequences faces challenges due to the high similarity of sequences and the complexity of the discrimination system in most reported works. Herein, a simple and ingenious analysis method was developed to identify eight miRNAs of the let-7 family by combining logic gates and entropy-driven catalytic (EDC)-based lanthanide labeling inductively coupled plasma mass spectrometry (ICP-MS) technology. Specifically, eight miRNAs were first divided into four types according to the difference of bases in the domains 2 and 3 on sequences. To identify the type of targets, a DNA logic gate was constructed with two strand displacement reactions on magnetic beads that could be initiated by different types of targets. Based on the difference of the output signals after two strand displacement reactions, the type of targets was distinguished preliminarily. Then, the discrimination of a specific target was achieved with EDC-based lanthanide labeling ICP-MS detection. By labeling the different magnetic probes with different elemental tags, a specific element signal released from magnetic beads after EDC could be detected by ICP-MS, and therefore, simultaneous detection of homologous sequences was completed. This work provided a novel and simple method for highly specific identification of homologous sequences with the assistance of a logic gate and can promote further development of elemental labeling ICP-MS in the field of multiple analysis.

10.
Genes (Basel) ; 15(3)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540437

RESUMEN

Genomic data in Gossypium provide numerous data resources for the cotton genomics community. However, to fill the gap between genomic analysis and breeding field work, detecting the featured genomic items of a subset cohort is essential for geneticists. We developed FPFinder v1.0 software to identify a subset of the cohort's fingerprint genomic sites. The FPFinder was developed based on the term frequency-inverse document frequency algorithm. With the short-read sequencing of an elite cotton pedigree, we identified 453 pedigree fingerprint genomic sites and found that these pedigree-featured sites had a role in cotton development. In addition, we applied FPFinder to evaluate the geographical bias of fiber-length-related genomic sites from a modern cotton cohort consisting of 410 accessions. Enriching elite sites in cultivars from the Yangtze River region resulted in the longer fiber length of Yangze River-sourced accessions. Apart from characterizing functional sites, we also identified 12,536 region-specific genomic sites. Combining the transcriptome data of multiple tissues and samples under various abiotic stresses, we found that several region-specific sites contributed to environmental adaptation. In this research, FPFinder revealed the role of the cotton pedigree fingerprint and region-specific sites in cotton development and environmental adaptation, respectively. The FPFinder can be applied broadly in other crops and contribute to genetic breeding in the future.


Asunto(s)
Gossypium , Fitomejoramiento , Humanos , Gossypium/genética , Sitios de Carácter Cuantitativo/genética , Genómica , Genoma de Planta
11.
Talanta ; 274: 125979, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537358

RESUMEN

Terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase, is recognized as a promising biomarker for acute leukemia. Herein, taking the advantage of the self-mediated strand elongation property of TdT, a simple and sensitive method for TdT activity assay was developed based on gold nanoparticles (AuNPs) labeling inductively coupled plasma mass spectrometry (ICP-MS). In the presence of TdT, the primer DNA on magnetic beads is elongated with an adenine-rich single stranded long chain that can label poly-thymine modified AuNPs. After acid elution, the labeled AuNPs were detected by ICP-MS, and the signal intensity of 197Au reflected the TdT activity. Under the optimal conditions, the limit of detection for TdT activity is down to 0.054 U mL-1, along with good selectivity and strong tolerance to other interfering proteins. Furthermore, it achieves a straightforward and accurate detection of TdT activity in acute lymphoblastic leukemia cells without sample pre-processing and tool enzyme addition. Therefore, the proposed method shows great promise as a valuable tool for TdT-related biological research and leukemia therapeutics.


Asunto(s)
ADN Nucleotidilexotransferasa , Oro , Espectrometría de Masas , Nanopartículas del Metal , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , Humanos , Oro/química , Nanopartículas del Metal/química , Espectrometría de Masas/métodos , Pruebas de Enzimas/métodos , ADN/química , ADN/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Límite de Detección
12.
Ecotoxicol Environ Saf ; 275: 116258, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547732

RESUMEN

Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5 h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250 µg/L As(V) in 48 h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.


Asunto(s)
Arsénico , Tetrahymena thermophila , Arsénico/metabolismo , Ecosistema , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Biotransformación , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
13.
Autophagy ; 20(1): 151-165, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651673

RESUMEN

ABBREVIATIONS: AKI: acute kidney injury; ATP: adenosine triphosphate; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; eGFR: estimated glomerular filtration rate; H&E: hematoxylin and eosin staining; LCN2/NGAL: lipocalin 2; LPS: lipopolysaccharide; LTL: lotus tetragonolobus lectin; mKeima: mitochondria-targeted Keima; mtDNA: mitochondrial DNA; PAS: periodic acid - Schiff staining; RTECs: renal tubular epithelial cells; SAKI: sepsis-induced acute kidney injury; Scr: serum creatinine; SIRT3: sirtuin 3; TFAM: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine.


Asunto(s)
Lesión Renal Aguda , Melatonina , Sepsis , Sirtuina 3 , Humanos , Mitofagia , Autofagia , Lipopolisacáridos , ADN Mitocondrial , Sepsis/complicaciones , Riñón , Proteínas de Unión al ADN , Factores de Transcripción , Proteínas Mitocondriales
14.
Anal Chem ; 96(2): 766-774, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38158582

RESUMEN

Microfluidic chips have emerged as a promising tool for sorting and enriching circulating tumor cells (CTCs) in blood, while the efficacy and purity of CTC sorting greatly depend on chip design. Herein, a novel cascaded phase-transfer microfluidic chip was developed for high-efficiency sorting, purification, release, and detection of MCF-7 cells (as a model CTC) in blood samples. MCF-7 cells were specifically captured by EpCAM aptamer-modified magnetic beads and then introduced into the designed cascaded phase-transfer microfluidic chip that consisted of three functional regions (sorting, purification, and release zone). In the sorting zone, the MCF-7 cells moved toward the inner wall of the channel and entered the purification zone for primary separation from white blood cells; in the purification zone, the MCF-7 cells were transferred to the phosphate-buffered saline flow under the interaction of Dean forces and central magnetic force, achieving high purification of MCF-7 cells from blood samples; in the release zone, MCF-7 cells were further transferred into the nuclease solution and fixed in groove by the strong magnetic force and hydrodynamic force, and the continuously flowing nuclease solution cleaved the aptamer on the trapped MCF-7 cells, causing gentle release of MCF-7 cells for subsequent inductively coupled plasma mass spectrometry (ICP-MS) detection or further cultivation. By measurement of the endogenous element Zn in the cells using ICP-MS for cell counting, an average cell recovery of 84% for MCF-7 cells was obtained in spiked blood samples. The developed method was applied in the analysis of real blood samples from healthy people and breast cancer patients, and CTCs were successfully detected in all tested patient samples (16/16). Additionally, the removal of the magnetic probes on the cell surface significantly improved cell viability up to 99.3%. Therefore, the developed cascaded phase-transfer microfluidic chip ICP-MS system possessed high integration for CTCs analysis with high cell viability, cell recovery, and purity, showing great advantages in early clinical cancer diagnosis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Microfluídica , Separación Celular/métodos , Línea Celular Tumoral , Técnicas Analíticas Microfluídicas/métodos , Fenómenos Magnéticos
15.
Genome Biol ; 24(1): 282, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066616

RESUMEN

BACKGROUND: Many elite genes have been identified from the available cotton genomic data, providing various genetic resources for gene-driven breeding. However, backbone cultivar-driven breeding is the most widely applied strategy. Revealing the genetic basis of cultivar-driven strategy's restriction is crucial for transition of cotton breeding strategy. RESULT: CRI12 is a backbone cultivar in cultivar-driven breeding. Here we sequence the pedigree of CRI12 using Nanopore long-read sequencing. We construct a graphical pedigree genome using the high-quality CRI12 genome and 13,138 structural variations within 20 different pedigree members. We find that low hereditary stability of elite segments in backbone cultivars is a drawback of cultivar-driven strategy. We also identify 623 functional segments in CRI12 for multiple agronomic traits in presence and absence variation-based genome-wide association study on three cohorts. We demonstrate that 25 deleterious segments are responsible for the geographical divergence of cotton in pathogen resistance. We also characterize an elite pathogen-resistant gene (GhKHCP) utilized in modern cotton breeding. In addition, we identify 386 pedigree fingerprint segments by comparing the segments of the CRI12 pedigree with those of a large cotton population. CONCLUSION: We characterize the genetic patterns of functional segments in the pedigree of CRI12 using graphical genome method, revealing restrictions of cultivar-driven strategies in cotton breeding. These findings provide theoretical support for transitioning from cultivar-driven to gene-driven strategy in cotton breeding.


Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Fitomejoramiento/métodos , Fenotipo , Genómica , Gossypium/genética
16.
BMC Musculoskelet Disord ; 24(1): 899, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980527

RESUMEN

OBJECTIVE: The purpose of this study was to compare the therapeutic effects of Kirschner wire fixation and external fixation in the treatment of proximal humeral fractures in older children and adolescents. METHODS: A retrospective analysis was performed on the clinical data of older children and adolescents who underwent surgery at our institution for proximal humeral fractures between April 2014 and May 2022. One group (n = 28) underwent fracture reduction and Kirschner wire fixation, and the other group (n = 23) underwent external fixation. During the follow-up, the differences in shoulder joint function between the two groups were compared by analysing Quick Disabilities of the Arm, Shoulder, and Hand (Quick DASH) and Constant-Murley scores. Postoperative complications were also recorded. RESULTS: The operation time of the Kirschner wire group was shorter than that of the external fixation group (69.07 ± 11.34 min vs. 77.39 ± 15.74 min, P = 0.33). The time to remove the fixator in the external fixation group was shorter than that in the Kirschner wire group (6.74 ± 1.57 vs. 7.61 ± 1.22, P = 0.032). The Quick DASH score and Constant-Murley score of the patients in the external fixation group were significantly better than those in the Kirschner wire group at 3 months after surgery (5.63 ± 4.33 vs. 8.93 ± 6.40, P = 0.040; 93.78 ± 2.43 vs. 91.75 ± 2.15, P = 0.003). There was no significant difference in the Quick DASH score or Constant-Murley score between the patients in the external fixator group and those in the Kirschner wire group at 9 months after the operation (2.77 ± 3.14 vs. 3.17 ± 3.68, P = 0.683; 97.39 ± 1.80 vs. 96.57 ± 2.15, P = 0.152). The most common complication of the two groups was pin tract infection. The incidence rate of infection was higher in the external fixation group than that in the Kirschner wire group (9 vs. 4, P = 0.043). CONCLUSION: Both Kirschner wire fixation and external fixation of N-H III and IV proximal humeral fractures in older children and adolescents produce good outcomes. External fixation is a preferred surgical treatment option for paediatric proximal humerus fractures because early mobilization of the affected limb can be realized.


Asunto(s)
Fracturas del Húmero , Fracturas del Hombro , Humanos , Niño , Adolescente , Hilos Ortopédicos , Fijación de Fractura/efectos adversos , Fijadores Externos , Fijación Interna de Fracturas/efectos adversos , Estudios Retrospectivos , Fracturas del Hombro/diagnóstico por imagen , Fracturas del Hombro/cirugía , Resultado del Tratamiento , Fracturas del Húmero/cirugía
17.
Dalton Trans ; 52(41): 15057-15070, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812395

RESUMEN

Although microstructure optimization is an effective strategy to improve and regulate electromagnetic wave (EMW) absorption properties, preparing microwave absorbents with enhanced EMW absorbing performance and tuned absorption band by a simple method remains challenging. Herein, ZnIn2S4/reduced graphene oxide (rGO) composites with flower-like and cloud-like morphologies were fabricated by a convenient hydrothermal method. The ZnIn2S4/rGO composites with different morphologies realize efficient EMW absorption and tunable absorption bands, covering a wide frequency range. The flower-like structure has an optimal reflection loss (RL) of up to -49.2 dB with a maximum effective absorption bandwidth (EAB) of 5.7 GHz, and its main absorption peaks are concentrated in the C and Ku bands. The minimal RL of the cloud-like structure can reach -36.3 dB, and the absorption peak shifts to the junction of X and Ku bands. The distinguished EMW absorption capacity originates from the uniquely optimized microstructure, complementary effect of ZnIn2S4 and rGO in dielectric constant, and synergy of various loss mechanisms, such as interfacial polarization, dipole polarization, conductive loss, and multiple reflections. This study proposes a guide for the structural optimization of an ideal EMW absorber to achieve efficient and tunable EMW absorption performance.

18.
Anal Chem ; 95(37): 14061-14067, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37677145

RESUMEN

Circulating tumor cell (CTC) detection is essential for early cancer diagnosis and evaluating treatment efficacy. Despite the growing interest in isolating CTCs and further quantifying surface biomarkers at the single-cell level, highly efficient separation of rare CTCs from massive blood cells is still a big challenge. Here, we developed an all-in-one microfluidic chip system for the immunolabeling, magnetic separation, and focusing of HepG2 cells (as a CTC model) and online combined it with single cell-inductively coupled plasma mass spectrometry (SC-ICP-MS) for quantitative analysis of the asialoglycoprotein receptor (ASGPR) on single HepG2 cells. Lanthanide-labeled anti-ASGPR monoclonal antibody and antiepithelial cell adhesion molecule-modified magnetic beads were prepared as signal and magnetic probes, respectively. Target cells were highly efficiently labeled with signal and magnetic probes in the mixing zone of the microfluidic chip and then focused and sorted in the separation zone by specific magnetic separation techniques to avoid matrix contamination. The average cell recovery of HepG2 cells was derived to be 94.1 ± 5.7% with high separation efficiency and purity. The sorted cells with signal probes were detected for enumeration and quantification of ASGPR on their surface by SC-ICP-MS. The developed method showed good specificity and high sensitivity, detecting an average of (1.0 ± 0.2) × 105 ASGPR molecules per cell surface. This method can be used for absolute quantitative analysis of ASGPR on the surface of single hepatocellular carcinoma cells in real-world samples, providing a highly efficient analytical platform for studying targeted drug delivery in cancer therapy.


Asunto(s)
Microfluídica , Células Neoplásicas Circulantes , Humanos , Línea Celular , Membrana Celular , Espectrometría de Masas
19.
Front Plant Sci ; 14: 1235688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492770
20.
Anal Chim Acta ; 1275: 341588, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37524476

RESUMEN

Due to the enormous interest in plants related to bioscience, environmental and toxicological research, analytical methods are expected with the ability of getting information on elemental transfer, distribution and contents in plants. In this work, a mixture of gelatin (GA) and hydroxypropyl methyl cellulose (HPMC) was prepared to simulate plant matrix, a method based on laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with matrix-matching external calibration was proposed for direct quantification of multiple elements in plants. The composition of GA&HPMC substrate was optimized, such as the concentration of spiked nitric acid, the mass fraction of both GA and HPMC in the substrate and the mass ratio of GA: HPMC. After spiking elemental solution, coating the mixture onto a glass slide and drying overnight at room temperature, GA&HPMC substrate was obtained. The substrate obtained with GA: HPMC of 8: 2 was used to fabricate the standard series, which exhibited good elemental homogeneity and similar elemental signal intensities in LA-ICP-MS detection to that obtained for plant Certified Reference Material (CRM). CRMs of different plants including Citrus leaf (GBW10019), Tea (GBW07605), Beans (GBW10021) and Scallions (GBW10049) were further pressed into pellets and subjected to the proposed method, and the quantification accuracy was demonstrated. The limits of detections of this method were found to be 0.003 (Ce)-104 (Ca) µg g-1, with a wide linear range (0.01-10000 µg g-1) for 17 target elements. The application potential of the method was further demonstrated by performing elemental imaging in Trigonotis peduncularis leaves. Rapid in-situ quantitative imaging of Zn, Cu, Sr and Mn was achieved, and the elemental quantitative distributions were discussed. The constructed substrate helped direct elemental quantification in plants. It provided a powerful and efficient tool for the investigation of the distribution and transfer of elements in plants, favoring further exploration of elemental bioavailability, transport and toxicity mechanisms.


Asunto(s)
Terapia por Láser , Espectrometría de Masas/métodos , Calibración , Plantas/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA