Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
BMC Med ; 22(1): 147, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38561764

BACKGROUND: Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS: This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS: The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS: This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.


Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/genetics , Prospective Studies , Artificial Intelligence , Ultrasonography , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Retrospective Studies
2.
Article En | MEDLINE | ID: mdl-38450587

CONTEXT: Accurately distinguishing between benign thyroid nodules (BTNs) and papillary thyroid cancers (PTCs) with current conventional methods poses a significant challenge. OBJECTIVE: We identify DNA methylation markers of immune response-related genes for distinguishing BTNs and PTCs. METHODS: In this study, we analyzed a public reduced representative bisulfite sequencing (RRBS) dataset and revealed distinct methylation patterns associated with immune signals in PTCs and BTNs. Based on these findings, we developed a diagnostic classifier named as the Methylation-based Immune Response Signature (MeIS), which was composed of fifteen DNA methylation markers associated with immune response-related genes. We validated the MeIS's performance in two independent cohorts: ZS's retrospective cohort (50 PTC and 18 BTN surgery-leftover samples) and ZS's preoperative cohort (31 PTC and 30 BTN fine-needle aspiration (FNA) samples). RESULTS: The MeIS classifier demonstrated significant clinical promise, achieving AUCs of 0.96, 0.98, 0.89 and 0.90 in the training set, validation set, ZS's retrospective cohort, and ZS's preoperative cohort, respectively. For the cytologically indeterminate thyroid nodules, in the ZS's retrospective cohort, MeIS exhibited a sensitivity of 91% and a specificity of 82%; in the ZS's preoperative cohort, MeIS achieved a sensitivity of 84% and a specificity of 74%. Additionally, combining MeIS and BRAFV600E detection improved the detecting performance of cytologically indeterminate thyroid nodules, yielding sensitivities of 98% and 87%, and specificities of 82% and 74% in the ZS's retrospective cohort and ZS's preoperative cohort, respectively. CONCLUSIONS: The fifteen markers we identified can be employed to improve the diagnostic of cytologically indeterminate thyroid nodules.

3.
Clin Epigenetics ; 15(1): 130, 2023 08 14.
Article En | MEDLINE | ID: mdl-37582783

BACKGROUND: An accurate and reproducible next-generation sequencing platform is essential to identify malignancy-related abnormal DNA methylation changes and translate them into clinical applications including cancer detection, prognosis, and surveillance. However, high-quality DNA methylation sequencing has been challenging because poor sequence diversity of the bisulfite-converted libraries severely impairs sequencing quality and yield. In this study, we tested MGISEQ-2000 Sequencer's capability of DNA methylation sequencing with a published non-invasive pancreatic cancer detection assay, using NovaSeq6000 as the benchmark. RESULTS: We sequenced a series of synthetic cell-free DNA (cfDNA) samples with different tumor fractions and found MGISEQ-2000 yielded data with similar quality as NovaSeq6000. The methylation levels measured by MGISEQ-2000 demonstrated high consistency with NovaSeq6000. Moreover, MGISEQ-2000 showed a comparable analytic sensitivity with NovaSeq6000, suggesting its potential for clinical detection. As to evaluate the clinical performance of MGISEQ-2000, we sequenced 24 clinical samples and predicted the pathology of the samples with a clinical diagnosis model, PDACatch classifier. The clinical model performance of MGISEQ-2000's data was highly consistent with that of NovaSeq6000's data, with the area under the curve of 1. We also tested the model's robustness with MGISEQ-2000's data when reducing the sequencing depth. The results showed that MGISEQ-2000's data showed matching robustness of the PDACatch classifier with NovaSeq6000's data. CONCLUSIONS: Taken together, MGISEQ-2000 demonstrated similar data quality, consistency of the methylation levels, comparable analytic sensitivity, and matching clinical performance, supporting its application in future non-invasive early cancer detection investigations by detecting distinct methylation patterns of cfDNAs.


DNA Methylation , Sulfites , Humans , Sequence Analysis, DNA/methods , Prognosis , High-Throughput Nucleotide Sequencing/methods
4.
EBioMedicine ; 90: 104497, 2023 Apr.
Article En | MEDLINE | ID: mdl-36868052

BACKGROUND: Cell-free DNA (cfDNA) is being explored as biomarker for non-invasive diagnosis of cancer. We aimed to establish a cfDNA-based DNA methylation marker panel to differentially diagnose papillary thyroid carcinoma (PTC) from benign thyroid nodule (BTN). METHODS: 220 PTC- and 188 BTN patients were enrolled. Methylation markers of PTC were identified from patients' tissue and plasma by reduced representation bisulfite sequencing and methylation haplotype analyses. They were combined with PTC markers from literatures and were tested on additional PTC and BTN samples to verify PTC-detecting ability using targeted methylation sequencing. Top markers were developed into ThyMet and were tested in 113 PTC and 88 BTN cases to train and validate a PTC-plasma classifier. Integration of ThyMet and thyroid ultrasonography was explored to improve accuracy. FINDINGS: From 859 potential PTC plasma-discriminating markers that include 81 markers identified by us, the top 98 most PTC plasma-discriminating markers were selected for ThyMet. A 6-marker ThyMet classifier for PTC plasma was trained. In validation it achieved an Area Under the Curve (AUC) of 0.828, similar to thyroid ultrasonography (0.833) but at higher specificity (0.722 and 0.625 for ThyMet and ultrasonography, respectively). A combinatorial classifier by them, ThyMet-US, improved AUC to 0.923 (sensitivity = 0.957, specificity = 0.708). INTERPRETATION: The ThyMet classifier improved the specificity of differentiating PTC from BTN over ultrasonography. The combinatorial ThyMet-US classifier may be effective in preoperative diagnosis of PTC. FUNDING: This work was supported by the grants from National Natural Science Foundation of China (82072956 and 81772850).


Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/genetics , Thyroid Nodule/diagnosis , Thyroid Nodule/genetics , Thyroid Nodule/pathology , DNA Methylation , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Biomarkers , Biomarkers, Tumor/metabolism
5.
Eur J Med Res ; 27(1): 276, 2022 Dec 05.
Article En | MEDLINE | ID: mdl-36464701

BACKGROUND AND AIM: Preoperative evaluation of microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) is important for surgical strategy determination. We aimed to develop and establish a preoperative predictive model for MVI status based on DNA methylation markers. METHODS: A total of 35 HCC tissues and the matched peritumoral normal liver tissues as well as 35 corresponding HCC patients' plasma samples and 24 healthy plasma samples were used for genome-wide methylation sequencing and subsequent methylation haplotype block (MHB) analysis. Predictive models were constructed based on selected MHB markers and 3-cross validation was used. RESULTS: We grouped 35 HCC patients into 2 categories, including the MVI- group with 17 tissue and plasma samples, and MVI + group with 18 tissue and plasma samples. We identified a tissue DNA methylation signature with an AUC of 98.0% and a circulating free DNA (cfDNA) methylation signature with an AUC of 96.0% for HCC detection. Furthermore, we established a tissue DNA methylation signature for MVI status prediction, and achieved an AUC of 85.9%. Based on the MVI status predicted by the DNA methylation signature, the recurrence-free survival (RFS) and overall survival (OS) were significantly better in the predicted MVI- group than that in the predicted MVI + group. CONCLUSIONS: In this study, we identified a cfDNA methylation signature for HCC detection and a tissue DNA methylation signature for MVI status prediction with high accuracy.


Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , DNA Methylation/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Cell-Free Nucleic Acids/genetics
6.
BMC Med ; 20(1): 458, 2022 11 25.
Article En | MEDLINE | ID: mdl-36434648

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a noninvasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood. METHODS: Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility. RESULTS: In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis (CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity = 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001). CONCLUSIONS: The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.


Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Circulating Tumor DNA/genetics , CA-19-9 Antigen , Methylation , Biomarkers, Tumor/genetics , Case-Control Studies , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
7.
Clin Epigenetics ; 13(1): 153, 2021 08 19.
Article En | MEDLINE | ID: mdl-34407868

BACKGROUND: Early-stage lung cancers radiologically manifested as ground-glass opacities (GGOs) have been increasingly identified, among which pure GGO (pGGO) has a good prognosis after local resection. However, the optimal surgical margin is still under debate. Precancerous lesions exist in tumor-adjacent tissues beyond the histological margin. However, potential precancerous epigenetic variation patterns beyond the histological margin of pGGO are yet to be discovered and described. RESULTS: A genome-wide high-resolution DNA methylation analysis was performed on samples collected from 15 pGGO at tumor core (TC), tumor edge (TE), para-tumor tissues at the 5 mm, 10 mm, 15 mm, 20 mm beyond the tumor, and peripheral normal (PN) tissue. TC and TE were tested with the same genetic alterations, which were also observed in histologically normal tissue at 5 mm in two patients with lower mutation allele frequency. According to the difference of methylation profiles between PN samples, 2284 methylation haplotype blocks (MHBs), 1657 differentially methylated CpG sites (DMCs), and 713 differentially methylated regions (DMRs) were identified using reduced representation bisulfite sequencing (RRBS). Two different patterns of methylation markers were observed: Steep (S) markers sharply changed at 5 mm beyond the histological margin, and Gradual (G) markers changed gradually from TC to PN. S markers composed 86.2% of the tumor-related methylation markers, and G markers composed the other 13.8%. S-marker-associated genes enriched in GO terms that were related to the hallmarks of cancer, and G-markers-associated genes enriched in pathways of stem cell pluripotency and transcriptional misregulation in cancer. Significant difference in DNA methylation score was observed between peripheral normal tissue and tumor-adjacent tissues 5 mm further from the histological margin (p < 0.001 in MHB markers). DNA methylation score at and beyond 10 mm from histological margin is not significantly different from peripheral normal tissues (p > 0.05 in all markers). CONCLUSIONS: According to the methylation pattern observed in our study, it was implied that methylation alterations were not significantly different between tissues at or beyond P10 and distal normal tissues. This finding explained for the excellent prognosis from radical resections with surgical margins of more than 15 mm. The inclusion of epigenetic characteristics into surgical margin analysis may yield a more sensitive and accurate assessment of remnant cancerous and precancerous cells in the surgical margins.


Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , DNA Methylation/genetics , Histology/statistics & numerical data , Adenocarcinoma of Lung/genetics , Adult , Aged , Biomarkers, Tumor/analysis , Female , Humans , Male , Margins of Excision , Middle Aged
8.
Aging (Albany NY) ; 13(6): 8817-8834, 2021 03 10.
Article En | MEDLINE | ID: mdl-33714951

BACKGROUND: Early diagnosis of severe acute pancreatitis (SAP) is essential to minimize its mortality and improve prognosis. We aimed to develop an accurate and applicable machine learning predictive model based on routine clinical testing results for stratifying acute pancreatitis (AP) severity. RESULTS: We identified 11 markers predictive of AP severity and trained an AP stratification model called APSAVE, which classified AP cases within 24 hours at an average area under the curve (AUC) of 0.74 +/- 0.04. It was further validated in 568 validation cases, achieving an AUC of 0.73, which is similar to that of Ranson's criteria (AUC = 0.74) and higher than APACHE II and BISAP (AUC = 0.69 and 0.66, respectively). CONCLUSIONS: We developed and validated a venous blood marker-based AP severity stratification model with higher accuracy and broader applicability, which holds promises for reducing SAP mortality and improving its clinical outcomes. MATERIALS AND METHODS: Nine hundred and forty-five AP patients were enrolled into this study. Clinical venous blood tests covering 65 biomarkers were performed on AP patients within 24 hours of admission. An SAP prediction model was built with statistical learning to select biomarkers that are most predictive for AP severity.


Biomarkers/blood , Early Diagnosis , Machine Learning , Pancreatitis/blood , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
9.
J Clin Endocrinol Metab ; 106(4): 1011-1021, 2021 03 25.
Article En | MEDLINE | ID: mdl-33394038

CONTEXT: Follicular thyroid carcinoma (FTC) is the second most common type of thyroid carcinoma and must be pathologically distinguished from benign follicular adenoma (FA). Additionally, the clinical assessment of thyroid tumors with uncertain malignant potential (TT-UMP) demands effective indicators. OBJECTIVE: We aimed to identify discriminating DNA methylation markers between FA and FTC. METHODS: DNA methylation patterns were investigated in 33 FTC and 33 FA samples using reduced representation bisulfite sequencing and methylation haplotype block-based analysis. A prediction model was constructed and validated in an independent cohort of 13 FTC and 13 FA samples. Moreover, 36 TT-UMP samples were assessed using this model. RESULTS: A total of 70 DNA methylation markers, approximately half of which were located within promoters, were identified to be significantly different between the FTC and FA samples. All the Gene Ontology terms enriched among the marker-associated genes were related to "DNA binding," implying that the inactivation of DNA binding played a role in FTC development. A random forest model with an area under the curve of 0.994 was constructed using those markers for discriminating FTC from FA in the validation cohort. When the TT-UMP samples were scored using this model, those with fewer driver mutations also exhibited lower scores. CONCLUSION: An FTC-predicting model was constructed using DNA methylation markers, which distinguished between FA and FTC tissues with a high degree of accuracy. This model can also be used to help determine the potential of malignancy in TT-UMP.


Adenocarcinoma, Follicular/diagnosis , Adenoma/diagnosis , Biomarkers, Tumor/genetics , DNA Methylation , Thyroid Neoplasms/diagnosis , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/metabolism , Adenoma/genetics , Adenoma/metabolism , Adolescent , Adult , Aged , Biomarkers, Tumor/metabolism , Child , Diagnosis, Differential , Female , Haplotypes , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Sensitivity and Specificity , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Young Adult
10.
Nat Commun ; 11(1): 3475, 2020 07 21.
Article En | MEDLINE | ID: mdl-32694610

Early detection has the potential to reduce cancer mortality, but an effective screening test must demonstrate asymptomatic cancer detection years before conventional diagnosis in a longitudinal study. In the Taizhou Longitudinal Study (TZL), 123,115 healthy subjects provided plasma samples for long-term storage and were then monitored for cancer occurrence. Here we report the preliminary results of PanSeer, a noninvasive blood test based on circulating tumor DNA methylation, on TZL plasma samples from 605 asymptomatic individuals, 191 of whom were later diagnosed with stomach, esophageal, colorectal, lung or liver cancer within four years of blood draw. We also assay plasma samples from an additional 223 cancer patients, plus 200 primary tumor and normal tissues. We show that PanSeer detects five common types of cancer in 88% (95% CI: 80-93%) of post-diagnosis patients with a specificity of 96% (95% CI: 93-98%), We also demonstrate that PanSeer detects cancer in 95% (95% CI: 89-98%) of asymptomatic individuals who were later diagnosed, though future longitudinal studies are required to confirm this result. These results demonstrate that cancer can be non-invasively detected up to four years before current standard of care.


Circulating Tumor DNA/blood , Early Detection of Cancer/methods , Neoplasms/blood , Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , China , DNA Methylation , Epigenomics , Female , Genetic Markers , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
11.
Mol Ther Oncolytics ; 17: 61-69, 2020 Jun 26.
Article En | MEDLINE | ID: mdl-32322663

We aimed to examine the therapeutic potential of polysaccharide H-1-2, a bioactive component of Pseudostellaria heterophylla, against pancreatic cancer, as well as to demonstrate the underlying molecular mechanisms. Invasion and migration of pancreatic cells treated with H-1-2 were evaluated. A xenograft tumor mouse model was established to assess the effect of H-1-2 on tumor growth. Expression levels of hypoxic inducible factor-1α (HIF1α) and anterior gradient 2 (AGR2) were measured in pancreatic cells after H-1-2 treatment. Luciferase report and chromatin immunoprecipitation assays were conducted to investigate HIF1α regulation on AGR2. AGR2 expression was re-introduced into pancreatic cells to assess the role of AGR2 as a downstream effector of hypoxia after H-1-2 treatment. H-1-2 inhibited invasion and migration of pancreatic cancer cells, repressed xenograft pancreatic tumor growth, and increased survival of mice. H-1-2 repressed AGR2 expression in pancreatic cancer cells through the hypoxia response element (HRE) in its promoter region. Ectopic AGR2 expression partially negated the H-1-2 inhibitory effect on invasion and migration of pancreatic cells and on xenograft pancreatic tumors growth, and it also compromised the H-1-2 promotional effect on survival of mice. We conclude that H-1-2 suppresses pancreatic cancer by inhibiting hypoxia-induced AGR2 expression, supporting further investigation into its efficacy against pancreatic cancer in clinical settings.

13.
Neurosci Bull ; 35(3): 369-377, 2019 Jun.
Article En | MEDLINE | ID: mdl-30255458

Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.


Brain/metabolism , Genes, Immediate-Early , Molecular Imaging/methods , Neurons/metabolism , Animals , Gene Expression Profiling/methods , Humans , Neural Pathways/metabolism , Signal-To-Noise Ratio
14.
J Thorac Dis ; 11(12): 4992-5003, 2019 Dec.
Article En | MEDLINE | ID: mdl-32030215

BACKGROUND: Some drugs that target molecular pathways are available for the targeted treatment of lung cancer. Multiple tests are needed to detect the status of the known molecular targets to determine whether the patients can respond to the drugs. An integrated platform for various gene alteration detection including both mutations and rearrangements is necessary for patients, especially those without enough tissue. METHODS: In our study, detections of EGFR mutations, ALK rearrangement, ROS1 rearrangement, and alterations of other nine important lung cancer-related genes were integrated into a single next-generation sequencing (NGS) platform. The NGS analysis was performed in 107 cases of non-small cell lung cancer (NSCLC). Meanwhile, hot spots such as EGFR L858R, EGFR E746-A750Del mutations and gene rearrangement of ALK and ROS1 were detected by immunohistochemical (IHC) staining. RESULTS: NGS could explore various gene mutations and gene rearrangements with a reduced experiment time and lower amounts of tumor tissues than multiple IHC staining experiments. NGS results were more informative and reliable than IHC staining for EGFR gene alterations, especially for the exon 19 region. NGS could also increase the positive rate of ALK rearrangement and decrease the false positive results of ROS1 rearrangements detected by IHC staining. CONCLUSIONS: NGS is effective for confirmation the status of various important lung cancer-related gene alterations. Furthermore, NGS is necessary for the confirmation of the IHC results of ALK and ROS1 rearrangements.

15.
Front Immunol ; 10: 2819, 2019.
Article En | MEDLINE | ID: mdl-31921112

Increasing evidences have suggested that natural killer (NK) cells in the tumor microenvironment are involved in the regulation of cancer development. However, the potential biological roles and regulatory mechanisms of NK cells in pancreatic cancer (PC) remain unclear. Co-culture system of NK cells with PC cells is used to test the ability of cancer cell proliferation, migration and invasion both in vitro and in vivo. And tail vein intravenous transfer was used to test metastasis in vivo. Meanwhile, extracellular vesicles (EVs) were separated and examined. Furthermore, reporter assay and Biotin-RNA pull down assay were performed to verify the interaction between molecules. NK cells can inhibit the malignant transformation of co-cultured PC cells both in vivo and in vitro, which requires miR-3607-3p. miR-3607-3p is found enriched in the EVs of NK cells and transmitted to PC cells, and low level of miR-3607-3p predicts poor prognosis in PC patients. It can also inhibit proliferation, migration and invasion of PC cells in vitro. Importantly, IL-26 is found to be a direct target of miR-3607-3p in PC cells. miR-3607-3p enriched in EVs derived from NK cells can inhibit the malignant transformation of PC probably through directly targeting of IL-26.


Interleukins/antagonists & inhibitors , Killer Cells, Natural/metabolism , Pancreatic Neoplasms/drug therapy , Animals , Cell Line , Cells, Cultured , Down-Regulation , Drug Screening Assays, Antitumor , Exosomes/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness
16.
Nat Protoc ; 13(1): 118-133, 2018 Jan.
Article En | MEDLINE | ID: mdl-29240733

Researchers in behavioral neuroscience have long sought imaging techniques that can identify and distinguish neural ensembles that are activated by sequentially applied stimuli at single-cell resolution across the whole brain. Taking advantage of the different kinetics of immediate-early genes' mRNA and protein expression, we addressed this problem by developing tyramide-amplified immunohistochemistry-fluorescence in situ hybridization (TAI-FISH), a dual-epoch neural-activity-dependent labeling protocol. Here we describe the step-by-step procedures for TAI-FISH on brain sections from mice that were sequentially stimulated by morphine (appetitive first stimulus) and foot shock (aversive second stimulus). We exemplify our approach by FISH-labeling the neural ensembles that were activated by the second stimulus for the mRNA expression of c-fos, a well-established marker of neural activation. We labeled neuronal ensembles activated by the first stimulus using fluorescence immunohistochemistry (IHC) for the c-fos protein. To further improve the temporal separation of the c-fos mRNA and protein signals, we provide instructions on how to enhance the protein signals using tyramide signal amplification (TSA). Compared with other dual-epoch labeling techniques, TAI-FISH provides better temporal separation of the activated neural ensembles and is better suited to investigation of whole-brain responses. TAI-FISH has been used to investigate neural activation patterns in response to appetitive and aversive stimuli, and we expect it to be more broadly utilized for visualizing brain responses to other types of stimuli, such as sensory stimuli or psychiatric drugs. From first stimulation to image analysis, TAI-FISH takes ∼9 d to complete.


Brain/drug effects , Immunohistochemistry/methods , In Situ Hybridization, Fluorescence/methods , Neurons/physiology , Proto-Oncogene Proteins c-fos/analysis , Animals , Biomarkers/analysis , Brain/physiology , Gene Expression Regulation , Genes, Immediate-Early , Genes, fos , Mice , Molecular Imaging/methods , Morphine/pharmacology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/metabolism
17.
Genome Res ; 27(1): 64-74, 2017 01.
Article En | MEDLINE | ID: mdl-27979994

Histone modifications are frequently used as markers for enhancer states, but how to interpret enhancer states in the context of embryonic development is not clear. The poised enhancer signature, involving H3K4me1 and low levels of H3K27ac, has been reported to mark inactive enhancers that are poised for future activation. However, future activation is not always observed, and alternative reasons for the widespread occurrence of this enhancer signature have not been investigated. By analyzing enhancers during dorsal-ventral (DV) axis formation in the Drosophila embryo, we find that the poised enhancer signature is specifically generated during patterning in the tissue where the enhancers are not induced, including at enhancers that are known to be repressed by a transcriptional repressor. These results suggest that, rather than serving exclusively as an intermediate step before future activation, the poised enhancer state may be a mark for spatial regulation during tissue patterning. We discuss the possibility that the poised enhancer state is more generally the result of repression by transcriptional repressors.


Body Patterning/genetics , Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Transcription, Genetic , Animals , Drosophila/genetics , Drosophila/growth & development , Epigenetic Repression/genetics , Gene Expression Regulation, Developmental , Histone Code/genetics , Histone-Lysine N-Methyltransferase/genetics , Transcription Factors/genetics
19.
Nat Biotechnol ; 33(4): 395-401, 2015 Apr.
Article En | MEDLINE | ID: mdl-25751057

Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode and single ligation), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins--human TBP and Drosophila NFkB, Twist and Max--shows that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs, and allows for the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA-sequence features such as DNA shape. ChIP-nexus will be broadly applicable to the study of in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms.


Chromatin Immunoprecipitation/methods , DNA/chemistry , DNA/genetics , Protein Interaction Mapping/methods , Transcription Factors/chemistry , Transcription Factors/genetics , Base Sequence , Binding Sites , Molecular Sequence Data , Protein Binding , Reproducibility of Results , Sensitivity and Specificity
20.
J Biol Chem ; 289(21): 14981-95, 2014 May 23.
Article En | MEDLINE | ID: mdl-24727477

Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction.


Histones/metabolism , Mediator Complex/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , TATA-Box Binding Protein/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Blotting, Northern , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mediator Complex/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , RNA Polymerase II/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , TATA-Box Binding Protein/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation, Genetic , Transcriptional Activation
...