Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 167
1.
Phys Chem Chem Phys ; 26(19): 14186-14193, 2024 May 15.
Article En | MEDLINE | ID: mdl-38713092

Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.

2.
J Am Chem Soc ; 146(18): 12485-12495, 2024 May 08.
Article En | MEDLINE | ID: mdl-38651836

Understanding the mechanisms of C-H activation of alkanes is a very important research topic. The reactions of metal clusters with alkanes have been extensively studied to reveal the electronic features governing C-H activation, while the experimental cluster reactivity was qualitatively interpreted case by case in the literature. Herein, we prepared and mass-selected over 100 rhodium-based clusters (RhxVyOz- and RhxCoyOz-) to react with light alkanes, enabling the determination of reaction rate constants spanning six orders of magnitude. A satisfactory model being able to quantitatively describe the rate data in terms of multiple cluster electronic features (average electron occupancy of valence s orbitals, the minimum natural charge on the metal atom, cluster polarizability, and energy gap involved in the agostic interaction) has been constructed through a machine learning approach. This study demonstrates that the general mechanisms governing the very important process of C-H activation by diverse metal centers can be discovered by interpreting experimental data with artificial intelligence.

3.
Dalton Trans ; 53(19): 8347-8355, 2024 May 14.
Article En | MEDLINE | ID: mdl-38666520

A fundamental understanding of the exact structural characteristics and reaction mechanisms of interface active sites is vital to engineering an energetic metal-support boundary in heterogeneous catalysis. Herein, benefiting from a newly developed high-temperature ion trap reactor, the reverse water-gas shift (RWGS) (CO2 + H2 → CO + H2O) catalyzed by a series of compositionally and structurally well-defined RhnVO3,4- (n = 3-7) clusters were identified under variable temperatures (298-773 K). It is discovered that the Rh5-7VO3,4- clusters can function more effectively to drive RWGS at relatively low temperatures. The experimentally observed size-dependent catalytic behavior was rationalized by quantum-chemical calculations; the framework of RhnVO3,4- is constructed by depositing the Rhn clusters on the VO3,4 "support", and a sandwiched base-acid-base [Rhout--Rhin+-VO3,4-; Rhout and Rhin represent the outer and inner Rh atoms, respectively] feature in Rh5-7VO3,4- governs the adsorption and activation of reactants as well as the facile desorption of the products. In contrast, isolated Rh5-7- clusters without the electronic modification of the VO3,4 "support" can only catalyze RWGS under relatively high-temperature conditions.

4.
Chemphyschem ; 25(9): e202400116, 2024 May 02.
Article En | MEDLINE | ID: mdl-38380870

Activation and transformation of methane is one of the "holy grails" in catalysis. Understanding the nature of active sites and mechanistic details via spectroscopic characterization of the reactive sites and key intermediates is of great challenge but crucial for the development of novel strategies for methane transformation. Herein, by employing photoelectron velocity-map imaging (PEVMI) spectroscopy in conjunction with quantum chemistry calculations, the Lewis acid-base pair (LABP) of [Taδ+-Nδ-] unit in Ta2N3 - acting as an active center to accomplish the heterolytic cleavage of C-H bond in CH4 has been confirmed by direct characterization of the reactant ion Ta2N3 - and the CH4-adduct intermediate Ta2N3CH4 -. Two active vibrational modes for the reactant (Ta2N3 -) and four active vibrational modes for the intermediate (Ta2N3CH4 -) were observed from the vibrationally resolved PEVMI spectra, which unequivocally determined the structure of Ta2N3 - and Ta2N3CH4 -. Upon heating, the LABP intermediate (Ta2N3CH4 -) containing the NH and Ta-CH3 unit can undergo the processes of C-N coupling and dehydrogenation to form the product with an adsorbed HCN molecule.

5.
J Phys Chem A ; 128(4): 738-746, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38236743

CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.

6.
J Phys Chem Lett ; 14(41): 9192-9199, 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37801470

Supported metals represent an important family of catalysts for the transformation of the most stable alkane, methane, under mild conditions. Here, using state-of-the-art mass spectrometry coupled with a newly designed double ion trap reactor that can run at high temperatures, we successfully immobilize a series of Rhn- (n = 4-8) cluster anions on a model support C20H10. Reactivity measurements at room temperature identify a significantly enhanced performance of large-sized Rh7,8C20H10- toward methane activation compared to that of free Rh7,8-. The "support" acting as an "electron sponge" is emphasized as the key factor to improve the reactivity of large-sized clusters, for which the high electron-withdrawing capability of C20H10 dramatically shifts the active Rh atom from the apex position in free Rh7- to the edge position in "supported" Rh7- to enhance CH4 adsorption, while the flexibility of C20H10 to release electrons further promotes subsequent C-H activation. The Rh atoms in direct contact with the support serve as electron-relay stations for electron transfer between C20H10 and the active Rh atom. This work not only establishes a novel approach to prepare and measure the reactivity of "supported" metal clusters in isolated gas phase but provides useful atomic-scale insights for understanding the chemical behavior of carbon (e.g., graphene)-supported metals in heterogeneous catalysis.

7.
J Am Chem Soc ; 145(33): 18658-18667, 2023 Aug 23.
Article En | MEDLINE | ID: mdl-37572057

Catalytic conversion of toxic nitrogen oxide (NO) and carbon monoxide (CO) into nitrogen (N2) and carbon dioxide (CO2) is imperative under the weight of the increasingly stringent emission regulations, while a fundamental understanding of the nature of the active site to selectively drive N2 generation is elusive. Herein, in combination with state-of-the-art mass-spectrometric experiments and quantum-chemical calculations, we demonstrated that the rhodium-cerium oxide clusters RhCe2O3-5- can catalytically drive NO reduction by CO and give rise to N2 and CO2. This finding represents a sharp improvement in cluster science where N2O is commonly produced in the rarely established examples of catalytic NO reduction mediated with gas-phase clusters. We demonstrated the importance of the unique chemical environment in the RhCe2O3- cluster to guide the substantially improved N2 selectivity: a triatomic Lewis "acid-base-acid" Ceδ+-Rhδ--Ceδ+ site is proposed to strongly adsorb two NO molecules as well as the N2O intermediate that is attached on the Rh atom and can facilely dissociate to form N2 assisted by both Ce atoms.

8.
J Phys Chem Lett ; 14(31): 6948-6955, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37498356

A fundamental understanding of the reactivity evolution of nanosized clusters at an atomically precise level is pivotal to assemble desired materials with promising candidates. Benefiting from the tandem mass spectrometer coupled with a high-temperature ion-trap reactor, the reactions of mass-selected Con- (n = 5-25) clusters with CO2 were investigated and the increased reactivity of Co20-25- was newly discovered herein. This finding marks an important step to understand property evolution of subnanometer metal clusters (Co25-, ∼0.8 nm) atom-by-atom. The reasons behind the increased reactivity of Co20-25- were proposed by analyzing the reactions of smaller Co6-8- clusters that exhibit significantly different reactivity toward CO2, in which a lower electron affinity of Con contributes to the capture of CO2 while the flexibility of Con- could play vital roles to stabilize reaction intermediates and suppress the barriers of O-CO rupture and CO desorption.

9.
J Phys Chem Lett ; 14(28): 6431-6436, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37432842

The introduction of organic ligands is one of the effective strategies to improve the stability and reactivity of metal clusters. Herein, the enhanced reactivity of benzene-ligated cluster anions Fe2VC(C6H6)- with respect to naked Fe2VC- is identified. Structural characterization suggests that C6H6 is molecularly bound to the dual metal site in Fe2VC(C6H6)-. Mechanistic details reveal that the cleavage of N≡N is feasible in Fe2VC(C6H6)-/N2 but hindered by an overall positive barrier in the Fe2VC-/N2 system. Further analysis discloses that the ligated C6H6 regulates the compositions and energy levels of the active orbitals of the metal clusters. More importantly, C6H6 serves as an electron reservoir for the reduction of N2 to lower the crucial energy barrier of N≡N splitting. This work demonstrates that the flexibility of C6H6 in terms of withdrawing and donating electrons is crucial to regulating the electronic structures of the metal cluster and enhancing the reactivity.

10.
Inorg Chem ; 62(29): 11318-11324, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37428555

Inspired by the fact that Mo is a key element in biological nitrogenase, a series of gas-phase MoxSy- cluster anions are prepared and their reactivity toward N2 is investigated by the combination of mass spectrometry, photoelectron imaging spectroscopy, and density functional theory calculations. The Mo5S2- and Mo5S3- cluster anions show remarkable reactivity compared with the anionic species reported previously. The spectroscopic results in conjunction with theoretical analysis reveal that a facile cleavage of N≡N bonds takes place on Mo5S2- and Mo5S3-. The large dissociative adsorption energy of N2 and the favorable entrance channel for initial N2 approaching are proposed as two decisive factors for the superior reactivity of Mo5S2- and Mo5S3-. Besides, the modulation of S ligands on the reactivity of metal centers with N2 is proposed. The highly reactive metal-sulfur species may be obtained by the coordination of two to three sulfur atoms to bare metal clusters so that an appropriate combination of electronic structures and charge distributions can be achieved.

11.
J Chem Phys ; 158(19)2023 May 21.
Article En | MEDLINE | ID: mdl-37191213

Understanding the properties of small particles working under high-temperature conditions at the atomistic scale is imperative for exact control of related processes, but it is quite challenging to achieve experimentally. Herein, benefitting from state-of-the-art mass spectrometry and by using our newly designed high-temperature reactor, the activity of atomically precise particles of negatively charged vanadium oxide clusters toward hydrogen atom abstraction (HAA) from methane, the most stable alkane molecule, has been measured at elevated temperatures up to 873 K. We discovered the positive correlation between the reaction rate and cluster size that larger clusters possessing greater vibrational degrees of freedom can carry more vibrational energies to enhance the HAA reactivity at high temperature, in contrast with the electronic and geometric issues that control the activity at room temperature. This finding opens up a new dimension, vibrational degrees of freedom, for the simulation or design of particle reactions under high-temperature conditions.

12.
J Phys Chem Lett ; 14(19): 4388-4393, 2023 May 18.
Article En | MEDLINE | ID: mdl-37140362

By using state-of-the-art mass spectrometry and guided by the newly discovered single-electron mechanism (SEM; e.g., Ti3+ + 2NO → Ti4+-O•- + N2O), we determined experimentally that the vanadium-aluminum oxide clusters V4-xAlxO10-x- (x = 1-3) can catalyze the reduction of NO by CO and substantiated theoretically that the SEM still prevails in driving the catalysis. This finding marks an important step in cluster science in which a noble metal had been demonstrated to be indispensable in NO activation mediated by heteronuclear metal clusters. The results provide new insights into the SEM in which active V-Al cooperative communication favors the transfer of an unpaired electron from the V atom to NO attached to the Al atom on which the reduction reaction actually takes place. This study provides a clear picture for improving our understanding of related heterogeneous catalysis, and the electron hopping behavior induced by NO adsorption could be a fundamental chemistry for driving NO reduction.

13.
Dalton Trans ; 52(20): 6668-6676, 2023 May 22.
Article En | MEDLINE | ID: mdl-37114992

The key to optimizing energy-consuming catalytic conversions lies in acquiring a fundamental understanding of the nature of the active sites and the mechanisms of elementary steps at an atomically precise level, while it is challenging to capture the crucial step that determines the overall temperature of a real-life catalytic reaction. Herein, benefiting from a newly-developed high-temperature ion trap reactor, the reverse water-gas shift (CO2 + H2 → CO + H2O) reaction catalyzed by the Rhn- (n = 3-11) clusters was investigated under variable temperatures (298-783 K) and the critical temperature that each elementary step (Rhn- + CO2 and RhnO- + H2) requires to take place was identified. The Rh4- cluster strikingly surpasses other Rhn- clusters to drive the catalysis at a mild starting temperature (∼440 K). This finding represents the first example that a specifically sized cluster catalyst that works under an optimum condition can be accurately filtered by using state-of-the-art mass spectrometric experiments and rationalized by quantum-chemical calculations.

14.
J Chem Theory Comput ; 19(6): 1922-1930, 2023 Mar 28.
Article En | MEDLINE | ID: mdl-36917066

The global optimization of metal cluster structures is an important research field. The traditional deep neural network (T-DNN) global optimization method is a good way to find out the global minimum (GM) of metal cluster structures, but a large number of samples are required. We developed a new global optimization method which is the combination of the DNN and transfer learning (DNN-TL). The DNN-TL method transfers the DNN parameters of the small-sized cluster to the DNN of the large-sized cluster to greatly reduce the number of samples. For the global optimization of Pt9 and Pt13 clusters in this research, the T-DNN method requires about 3-10 times more samples than the DNN-TL method, and the DNN-TL method saves about 70-80% of time. We also found that the average amplitude of parameter changes in the T-DNN training is about 2 times larger than that in the DNN-TL training, which rationalizes the effectiveness of transfer learning. The average fitting errors of the DNN trained by the DNN-TL method can be even smaller than those by the T-DNN method because of the reliability of transfer learning. Finally, we successfully obtained the GM structures of Ptn (n = 8-14) clusters by the DNN-TL method.

15.
J Phys Chem A ; 127(7): 1636-1641, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36786668

Understanding the active sites and reaction mechanisms of Ni-based catalysts, such as Ni/Al2O3, toward methane is a prerequisite for improving their rational design. Here, the gas-phase reactivity of NiAlO3+ cations toward CH4 is studied using mass spectrometry combined with density functional theory. Similar to our previous study on NiAl2O4+, we find evidence for the formation of both the methyl radical (CH3•) and formaldehyde (CH2O). The first step for methane activation is hydrogen atom abstraction by the terminal oxygen radical Ni(O)2AlO• from methane forming a [Ni(O)2AlOH+, •CH3] complex and leaving the Ni-oxidation state unchanged. The second C-H bond is subsequently activated by the association of a bridged Ni-O2--Al. The oxidation state of the Ni atom is reduced from +3 to +1 during the formation of formaldehyde. Compared to Al2O3+/CH4 and YAlO3+/CH4 systems, the Ni-atom substitution increases the overall reaction rate by roughly an order of magnitude and yields a CH3•/CH2O branching ratio of 0.62/0.38. The present study provides molecular-level insights into the highly efficient gas-phase reaction mechanism contributing to an improved understanding of methane conversion by Ni/Al2O3 catalysts.

16.
Phys Chem Chem Phys ; 25(6): 4444-4459, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36723009

Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.

17.
Chemphyschem ; 24(9): e202200879, 2023 May 02.
Article En | MEDLINE | ID: mdl-36650611

Late transition metal-bonded atomic oxygen radicals (LTM-O⋅- ) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM-O⋅- -mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM-O⋅- radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3 O10 - and FeV5 O15 - featuring with Fe-O⋅- radicals to abstract a hydrogen atom from C2 -C4 alkanes has been experimentally characterized at 298 K, and the rate constants are determined in the orders of magnitude of 10-14 to 10-16  cm3 molecule-1 s-1 , which are four orders of magnitude slower than the values of counterpart ScV3 O10 - and ScV5 O15 - clusters bearing Sc-O⋅- radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe-O⋅- . This study not only quantitatively characterizes the elementary reactions of LTM-O⋅- radicals with alkanes, but also provides new insights into structure-activity relationship of M-O⋅- radicals.

18.
Chemistry ; 29(14): e202203384, 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36511849

We report on cluster-mediated C-N bond formation in the gas phase using N2 as a nitrogen source. The V3 C+ +N2 reaction is studied by a combination of ion-trap mass spectrometry with infrared photodissociation (IRPD) spectroscopy and complemented by electronic structure calculations. The proposed reaction mechanism is spectroscopically validated by identifying the structures of the reactant and product ions. V3 C+ exhibits a pyramidal structure of C1 -symmetry. N2 activation is initiated by adsorption in an end-on fashion at a vanadium site, followed by spontaneous cleavage of the N≡N triple bond and subsequent C-N coupling. The IRPD spectrum of the metal nitride product [NV3 (C=N)]+ exhibits characteristic C=N double bond (1530 cm-1 ) and V-N single bond (770, 541 and 522 cm-1 ) stretching bands.

19.
Chemphyschem ; 24(4): e202200743, 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36308426

A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.

20.
Phys Chem Chem Phys ; 24(48): 29765-29771, 2022 Dec 14.
Article En | MEDLINE | ID: mdl-36458914

Identifying the structural configurations of precursors for CO dissociation is fundamentally interesting and industrially important in the fields of, e.g., Fischer-Tropsch synthesis. Herein, we demonstrated that CO could be dissociated on polynuclear vanadium nitride V4N5- clusters at room temperature, and a key intermediate, with CO in a N-assisted tilted bridge coordination where the C-O bond ruptures easily, was discovered. The reaction was characterized by mass spectrometry, photoelectron spectroscopy, and quantum-chemistry calculations, and the nature of the adsorbed CO on product V4N5CO- was further characterized by a collision-induced dissociation experiment. Theoretical analysis evidences that CO dissociation is predominantly governed by the low-coordinated V and N atoms on the (V3N4)VN- cluster and the V3N4 moiety resembles a support. This finding strongly suggests that a novel mode for facile CO dissociation was identified in a gas-phase cluster study.

...