Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Neuroimage ; 298: 120774, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103065

RESUMEN

How cortical oscillations are involved in the coordination of functionally coupled muscles and how this is modulated by different movement contexts (static vs dynamic) remains unclear. Here, this is investigated by recording high-density electroencephalography (EEG) and electromyography (EMG) from different forearm muscles while healthy participants (n = 20) performed movement tasks (static and dynamic posture holding, and reaching) with their dominant hand. When dynamic perturbation was applied, beta band (15-35 Hz) activities in the motor cortex contralateral to the performing hand reduced during the holding phase, comparative to when there was no perturbation. During static posture holding, transient periods of increased cortical beta oscillations (beta bursts) were associated with greater corticomuscular coherence and increased phase synchrony between muscles (intermuscular coherence) in the beta frequency band compared to the no-burst period. This effect was not present when resisting dynamic perturbation. The results suggest that cortical beta bursts assist synchronisation of different muscles during static posture holding in healthy motor control, contributing to the maintenance and stabilisation of functional muscle groups. Theoretically, increased cortical beta oscillations could lead to exaggerated synchronisation in different muscles making the initialisation of movements more difficult, as observed in Parkinson's disease.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38949928

RESUMEN

Brain-computer interfaces (BCIs) provide a communication interface between the brain and external devices and have the potential to restore communication and control in patients with neurological injury or disease. For the invasive BCIs, most studies recruited participants from hospitals requiring invasive device implantation. Three widely used clinical invasive devices that have the potential for BCIs applications include surface electrodes used in electrocorticography (ECoG) and depth electrodes used in Stereo-electroencephalography (SEEG) and deep brain stimulation (DBS). This review focused on BCIs research using surface (ECoG) and depth electrodes (including SEEG, and DBS electrodes) for movement decoding on human subjects. Unlike previous reviews, the findings presented here are from the perspective of the decoding target or task. In detail, five tasks will be considered, consisting of the kinematic decoding, kinetic decoding,identification of body parts, dexterous hand decoding, and motion intention decoding. The typical studies are surveyed and analyzed. The reviewed literature demonstrated a distributed motor-related network that spanned multiple brain regions. Comparison between surface and depth studies demonstrated that richer information can be obtained using surface electrodes. With regard to the decoding algorithms, deep learning exhibited superior performance using raw signals than traditional machine learning algorithms. Despite the promising achievement made by the open-loop BCIs, closed-loop BCIs with sensory feedback are still in their early stage, and the chronic implantation of both ECoG surface and depth electrodes has not been thoroughly evaluated.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Electrodos Implantados , Movimiento , Humanos , Electrocorticografía/instrumentación , Electrocorticografía/métodos , Movimiento/fisiología , Estimulación Encefálica Profunda/instrumentación , Fenómenos Biomecánicos , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Electrodos , Corteza Motora/fisiología , Mano/fisiología , Algoritmos
3.
Neurobiol Dis ; 197: 106519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685358

RESUMEN

Neural oscillations are critical to understanding the synchronisation of neural activities and their relevance to neurological disorders. For instance, the amplitude of beta oscillations in the subthalamic nucleus has gained extensive attention, as it has been found to correlate with medication status and the therapeutic effects of continuous deep brain stimulation in people with Parkinson's disease. However, the frequency stability of subthalamic nucleus beta oscillations, which has been suggested to be associated with dopaminergic information in brain states, has not been well explored. Moreover, the administration of medicine can have inverse effects on changes in frequency and amplitude. In this study, we proposed a method based on the stationary wavelet transform to quantify the amplitude and frequency stability of subthalamic nucleus beta oscillations and evaluated the method using simulation and real data for Parkinson's disease patients. The results suggest that the amplitude and frequency stability quantification has enhanced sensitivity in distinguishing pathological conditions in Parkinson's disease patients. Our quantification shows the benefit of combining frequency stability information with amplitude and provides a new potential feedback signal for adaptive deep brain stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Humanos , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Ritmo beta/fisiología , Ritmo beta/efectos de los fármacos , Antiparkinsonianos/uso terapéutico , Análisis de Ondículas
5.
CNS Neurosci Ther ; 30(6): e14559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38115730

RESUMEN

BACKGROUND: The management of patients with disorders of consciousness (DOC) presents substantial challenges in clinical practice. Deep brain stimulation (DBS) has emerged as a potential therapeutic approach, but the lack of standardized regulatory parameters for DBS in DOC hinders definitive conclusions. OBJECTIVE: This comprehensive review aims to provide a detailed summary of the current issues concerning patient selection, target setting, and modulation parameters in clinical studies investigating the application of DBS for DOC patients. METHODS: A meticulous systematic analysis of the literatures was conducted, encompassing articles published from 1968 to April 2023, retrieved from reputable databases (PubMed, Embase, Medline, and Web of Science). RESULTS: The systematic analysis of 21 eligible articles, involving 146 patients with DOC resulting from acquired brain injury or other disorders, revealed significant insights. The most frequently targeted regions were the Centromedian-parafascicular complex (CM-pf) nuclei and central thalamus (CT), both recognized for their role in regulating consciousness. However, other targets have also been explored in different studies. The stimulation frequency was predominantly set at 25 or 100 Hz, with pulse width of 120 µs, and voltages ranged from 0 to 4 V. These parameters were customized based on individual patient responses and evaluations. The overall clinical efficacy rate in all included studies was 39.7%, indicating a positive effect of DBS in a subset of DOC patients. Nonetheless, the assessment methods, follow-up durations, and outcome measures varied across studies, potentially contributing to the variability in reported efficacy rates. CONCLUSION: Despite the challenges arising from the lack of standardized parameters, DBS shows promising potential as a therapeutic option for patients with DOC. However, there still remains the need for standardized protocols and assessment methods, which are crucial to deepen the understanding and optimizing the therapeutic potential of DBS in this specific patient population.


Asunto(s)
Trastornos de la Conciencia , Estimulación Encefálica Profunda , Estimulación Encefálica Profunda/métodos , Humanos , Trastornos de la Conciencia/terapia
7.
Brain ; 146(12): 5015-5030, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433037

RESUMEN

Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Temblor/terapia , Movimiento/fisiología , Núcleo Subtalámico/fisiología
8.
Netw Neurosci ; 7(2): 478-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397890

RESUMEN

Beyond the established effects of subthalamic nucleus deep brain stimulation (STN-DBS) in reducing motor symptoms in Parkinson's disease, recent evidence has highlighted the effect on non-motor symptoms. However, the impact of STN-DBS on disseminated networks remains unclear. This study aimed to perform a quantitative evaluation of network-specific modulation induced by STN-DBS using Leading Eigenvector Dynamics Analysis (LEiDA). We calculated the occupancy of resting-state networks (RSNs) in functional MRI data from 10 patients with Parkinson's disease implanted with STN-DBS and statistically compared between ON and OFF conditions. STN-DBS was found to specifically modulate the occupancy of networks overlapping with limbic RSNs. STN-DBS significantly increased the occupancy of an orbitofrontal limbic subsystem with respect to both DBS OFF (p = 0.0057) and 49 age-matched healthy controls (p = 0.0033). Occupancy of a diffuse limbic RSN was increased with STN-DBS OFF when compared with healthy controls (p = 0.021), but not when STN-DBS was ON, which indicates rebalancing of this network. These results highlight the modulatory effect of STN-DBS on components of the limbic system, particularly within the orbitofrontal cortex, a structure associated with reward processing. These results reinforce the value of quantitative biomarkers of RSN activity in evaluating the disseminated impact of brain stimulation techniques and the personalization of therapeutic strategies.

9.
Front Hum Neurosci ; 17: 1134599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333834

RESUMEN

Processing incoming neural oscillatory signals in real-time and decoding from them relevant behavioral or pathological states is often required for adaptive Deep Brain Stimulation (aDBS) and other brain-computer interface (BCI) applications. Most current approaches rely on first extracting a set of predefined features, such as the power in canonical frequency bands or various time-domain features, and then training machine learning systems that use those predefined features as inputs and infer what the underlying brain state is at each given time point. However, whether this algorithmic approach is best suited to extract all available information contained within the neural waveforms remains an open question. Here, we aim to explore different algorithmic approaches in terms of their potential to yield improvements in decoding performance based on neural activity such as measured through local field potentials (LFPs) recordings or electroencephalography (EEG). In particular, we aim to explore the potential of end-to-end convolutional neural networks, and compare this approach with other machine learning methods that are based on extracting predefined feature sets. To this end, we implement and train a number of machine learning models, based either on manually constructed features or, in the case of deep learning-based models, on features directly learnt from the data. We benchmark these models on the task of identifying neural states using simulated data, which incorporates waveform features previously linked to physiological and pathological functions. We then assess the performance of these models in decoding movements based on local field potentials recorded from the motor thalamus of patients with essential tremor. Our findings, derived from both simulated and real patient data, suggest that end-to-end deep learning-based methods may surpass feature-based approaches, particularly when the relevant patterns within the waveform data are either unknown, difficult to quantify, or when there may be, from the point of view of the predefined feature extraction pipeline, unidentified features that could contribute to decoding performance. The methodologies proposed in this study might hold potential for application in adaptive deep brain stimulation (aDBS) and other brain-computer interface systems.

10.
NPJ Parkinsons Dis ; 9(1): 93, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328511

RESUMEN

In patients with Parkinson's disease (PD), suppression of beta and increase in gamma oscillations in the subthalamic nucleus (STN) have been associated with both levodopa treatment and motor functions. Recent results suggest that modulation of the temporal dynamics of theses oscillations (bursting activity) might contain more information about pathological states and behaviour than their average power. Here we directly compared the information provided by power and burst analyses about the drug-related changes in STN activities and their impact on motor performance within PD patients. STN local field potential (LFP) signals were recorded from externalized patients performing self-paced movements ON and OFF levodopa. When normalised across medication states, both power and burst analyses showed an increase in low-beta oscillations in the dopamine-depleted state during rest. When normalised within-medication state, both analyses revealed that levodopa increased movement-related modulation in the alpha and low-gamma bands, with higher gamma activity around movement predicting faster reaches. Finally, burst analyses helped to reveal opposite drug-related changes in low- and high-beta frequency bands, and identified additional within-patient relationships between high-beta bursting and movement performance. Our findings suggest that although power and burst analyses share a lot in common they also provide complementary information on how STN-LFP activity is associated with motor performance, and how levodopa treatment may modify these relationships in a way that helps explain drug-related changes in motor performance. Different ways of normalisation in the power analysis can reveal different information. Similarly, the burst analysis is sensitive to how the threshold is defined - either for separate medication conditions separately, or across pooled conditions. In addition, the burst interpretation has far-reaching implications about the nature of neural oscillations - whether the oscillations happen as isolated burst-events or are they sustained phenomena with dynamic amplitude variations? This can be different for different frequency bands, and different for different medication states even for the same frequency band.

11.
Front Hum Neurosci ; 17: 1111590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292583

RESUMEN

Introduction: Decoding brain states from subcortical local field potentials (LFPs) indicative of activities such as voluntary movement, tremor, or sleep stages, holds significant potential in treating neurodegenerative disorders and offers new paradigms in brain-computer interface (BCI). Identified states can serve as control signals in coupled human-machine systems, e.g., to regulate deep brain stimulation (DBS) therapy or control prosthetic limbs. However, the behavior, performance, and efficiency of LFP decoders depend on an array of design and calibration settings encapsulated into a single set of hyper-parameters. Although methods exist to tune hyper-parameters automatically, decoders are typically found through exhaustive trial-and-error, manual search, and intuitive experience. Methods: This study introduces a Bayesian optimization (BO) approach to hyper-parameter tuning, applicable through feature extraction, channel selection, classification, and stage transition stages of the entire decoding pipeline. The optimization method is compared with five real-time feature extraction methods paired with four classifiers to decode voluntary movement asynchronously based on LFPs recorded with DBS electrodes implanted in the subthalamic nucleus of Parkinson's disease patients. Results: Detection performance, measured as the geometric mean between classifier specificity and sensitivity, is automatically optimized. BO demonstrates improved decoding performance from initial parameter setting across all methods. The best decoders achieve a maximum performance of 0.74 ± 0.06 (mean ± SD across all participants) sensitivity-specificity geometric mean. In addition, parameter relevance is determined using the BO surrogate models. Discussion: Hyper-parameters tend to be sub-optimally fixed across different users rather than individually adjusted or even specifically set for a decoding task. The relevance of each parameter to the optimization problem and comparisons between algorithms can also be difficult to track with the evolution of the decoding problem. We believe that the proposed decoding pipeline and BO approach is a promising solution to such challenges surrounding hyper-parameter tuning and that the study's findings can inform future design iterations of neural decoders for adaptive DBS and BCI.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37130248

RESUMEN

Brain computer interfaces (BCIs) have been demonstrated to have the potential to enhance motor recovery after stroke. However, some stroke patients with severe paralysis have difficulty achieving the BCI performance required for participating in BCI-based rehabilitative interventions, limiting their clinical benefits. To address this issue, we presented a BCI intervention approach that can adapt to patients' BCI performance and reported that adaptive BCI-based functional electrical stimulation (FES) treatment induced clinically significant, long-term improvements in upper extremity motor function after stroke more effectively than FES treatment without BCI intervention. These improvements were accompanied by a more optimized brain functional reorganization. Further comparative analysis revealed that stroke patients with low BCI performance (LBP) had no significant difference from patients with high BCI performance in rehabilitation efficacy improvement. Our findings suggested that the current intervention may be an effective way for LBP patients to engage in BCI-based rehabilitation treatment and may promote lasting motor recovery, thus contributing to expanding the applicability of BCI-based rehabilitation treatments to pave the way for more effective rehabilitation treatments.


Asunto(s)
Interfaces Cerebro-Computador , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Recuperación de la Función/fisiología , Extremidad Superior
13.
Neurobiol Dis ; 178: 106019, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706929

RESUMEN

Evoked resonant neural activity (ERNA) is induced by subthalamic deep brain stimulation (DBS) and was recently suggested as a marker of lead placement and contact selection in Parkinson's disease. Yet, its underlying mechanisms and how it is modulated by stimulation parameters are unclear. Here, we recorded local field potentials from 27 Parkinson's disease patients, while leads were externalised to scrutinise the ERNA. First, we show that ERNA in the time series waveform and spectrogram likely represent the same activity, which was contested before. Second, our results show that the ERNA has fast and slow dynamics during stimulation, consistent with the synaptic failure hypothesis. Third, we show that ERNA parameters are modulated by different DBS frequencies, intensities, medication states and stimulation modes (continuous DBS vs. adaptive DBS). These results suggest the ERNA might prove useful as a predictor of the best DBS frequency and lowest effective intensity in addition to contact selection. Changes with levodopa and DBS mode suggest that the ERNA may indicate the state of the cortico-basal ganglia circuit making it a putative biomarker to track clinical state in adaptive DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Subtalámico/fisiología , Estimulación Encefálica Profunda/métodos , Ganglios Basales , Levodopa/farmacología , Potenciales Evocados/fisiología
14.
Mov Disord ; 38(3): 423-434, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36562479

RESUMEN

BACKGROUND: Subthalamic nucleus (STN) stimulation is an effective treatment for Parkinson's disease and induced local field potential (LFP) changes that have been linked with clinical improvement. STN stimulation has also been used in dystonia although the internal globus pallidus is the standard target where theta power has been suggested as a physiomarker for adaptive stimulation. OBJECTIVE: We aimed to explore if enhanced theta power was also present in STN and if stimulation-induced spectral changes that were previously reported for Parkinson's disease would occur in dystonia. METHODS: We recorded LFPs from 7 patients (12 hemispheres) with isolated craniocervical dystonia whose electrodes were placed such that inferior, middle, and superior contacts covered STN, zona incerta, and thalamus. RESULTS: We did not observe prominent theta power in STN at rest. STN stimulation induced similar spectral changes in dystonia as in Parkinson's disease, such as broadband power suppression, evoked resonant neural activity (ERNA), finely-tuned gamma oscillations, and an increase in aperiodic exponents in STN-LFPs. Both power suppression and ERNA localize to STN. Based on this, single-pulse STN stimulation elicits evoked neural activities with largest amplitudes in STN, which are relayed to the zona incerta and thalamus with changing characteristics as the distance from STN increases. CONCLUSIONS: Our results show that STN stimulation-induced spectral changes are a nondisease-specific response to high-frequency stimulation, which can serve as placement markers for STN. This broadens the scope of STN stimulation and makes it an option for other disorders with excessive oscillatory peaks in STN. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Distonía/terapia , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Globo Pálido , Trastornos Distónicos/terapia
15.
Brain ; 145(1): 237-250, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34264308

RESUMEN

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Motores , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Subtalámico/fisiología
16.
J Neurosci ; 41(40): 8390-8402, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34413208

RESUMEN

The pedunculopontine nucleus (PPN) is a reticular collection of neurons at the junction of the midbrain and pons, playing an important role in modulating posture and locomotion. Deep brain stimulation of the PPN has been proposed as an emerging treatment for patients with Parkinson's disease (PD) or multiple system atrophy (MSA) who have gait-related atypical parkinsonian syndromes. In this study, we investigated PPN activities during gait to better understand its functional role in locomotion. Specifically, we investigated whether PPN activity is rhythmically modulated by gait cycles during locomotion. PPN local field potential (LFP) activities were recorded from PD or MSA patients with gait difficulties during stepping in place or free walking. Simultaneous measurements from force plates or accelerometers were used to determine the phase within each gait cycle at each time point. Our results showed that activities in the alpha and beta frequency bands in the PPN LFPs were rhythmically modulated by the gait phase within gait cycles, with a higher modulation index when the stepping rhythm was more regular. Meanwhile, the PPN-cortical coherence was most prominent in the alpha band. Both gait phase-related modulation in the alpha/beta power and the PPN-cortical coherence in the alpha frequency band were spatially specific to the PPN and did not extend to surrounding regions. These results suggest that alternating PPN modulation may support gait control. Whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control remains to be tested.SIGNIFICANCE STATEMENT The therapeutic efficacy of pedunculopontine nucleus (PPN) deep brain stimulation (DBS) and the extent to which it can improve quality of life are still inconclusive. Understanding how PPN activity is modulated by stepping or walking may offer insight into how to improve the efficacy of PPN DBS in ameliorating gait difficulties. Our study shows that PPN alpha and beta activity was modulated by the gait phase, and that this was most pronounced when the stepping rhythm was regular. It remains to be tested whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control.


Asunto(s)
Ritmo alfa/fisiología , Ritmo beta/fisiología , Estimulación Encefálica Profunda/métodos , Marcha/fisiología , Núcleo Tegmental Pedunculopontino/fisiología , Anciano , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/fisiopatología , Atrofia de Múltiples Sistemas/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia
17.
Mov Disord ; 36(4): 863-873, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33547859

RESUMEN

BACKGROUND: High-frequency thalamic stimulation is an effective therapy for essential tremor, which mainly affects voluntary movements and/or sustained postures. However, continuous stimulation may deliver unnecessary current to the brain due to the intermittent nature of the tremor. OBJECTIVE: We proposed to close the loop of thalamic stimulation by detecting tremor-provoking movement states using local field potentials recorded from the same electrodes implanted for stimulation, so that the stimulation is only delivered when necessary. METHODS: Eight patients with essential tremor participated in this study. Patient-specific support vector machine classifiers were first trained using data recorded while the patient performed tremor-provoking movements. Then, the trained models were applied in real-time to detect these movements and triggered the delivery of stimulation. RESULTS: Using the proposed method, stimulation was switched on for 80.37 ± 7.06% of the time when tremor-evoking movements were present. In comparison, the stimulation was switched on for 12.71 ± 7.06% of the time when the patients were at rest and tremor-free. Compared with continuous stimulation, a similar amount of tremor suppression was achieved while only delivering 36.62 ± 13.49% of the energy used in continuous stimulation. CONCLUSIONS: The results suggest that responsive thalamic stimulation for essential tremor based on tremor-provoking movement detection can be achieved without any requirement for external sensors or additional electrocorticography strips. Further research is required to investigate whether the decoding model is stable across time and generalizable to the variety of activities patients may engage with in everyday life. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Temblor Esencial/terapia , Humanos , Movimiento , Tálamo , Temblor/terapia
18.
Elife ; 92020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33205752

RESUMEN

Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson's disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.


Asunto(s)
Ritmo beta , Actividad Motora/fisiología , Neurorretroalimentación , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Temblor , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3023-3026, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018642

RESUMEN

Neural oscillating patterns, or time-frequency features, predicting voluntary motor intention, can be extracted from the local field potentials (LFPs) recorded from the sub-thalamic nucleus (STN) or thalamus of human patients implanted with deep brain stimulation (DBS) electrodes for the treatment of movement disorders. This paper investigates the optimization of signal conditioning processes using deep learning to augment time-frequency feature extraction from LFP signals, with the aim of improving the performance of real-time decoding of voluntary motor states. A brain-computer interface (BCI) pipeline capable of continuously classifying discrete pinch grip states from LFPs was designed in Pytorch, a deep learning framework. The pipeline was implemented offline on LFPs recorded from 5 different patients bilaterally implanted with DBS electrodes. Optimizing channel combination in different frequency bands and frequency domain feature extraction demonstrated improved classification accuracy of pinch grip detection and laterality of the pinch (either pinch of the left hand or pinch of the right hand). Overall, the optimized BCI pipeline achieved a maximal average classification accuracy of 79.67±10.02% when detecting all pinches and 67.06±10.14% when considering the laterality of the pinch.


Asunto(s)
Trastornos del Movimiento , Fuerza de la Mano , Humanos
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3367-3370, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018726

RESUMEN

Continuous high frequency Deep Brain Stimulation (DBS) is a standard therapy for several neurological disorders. Closed-loop DBS is expected to further improve treatment by providing adaptive, on-demand therapy. Local field potentials (LFPs) recorded from the stimulation electrodes are the most often used feedback signal in closed-loop DBS. However, closed-loop DBS based on LFPs requires simultaneous recording and stimulating, which remains a challenge due to persistent stimulation artefacts that distort underlying LFP biomarkers. Here we first investigate the nature of the stimulation-induced artefacts and review several techniques that have been proposed to deal with them. Then we propose a new method to synchronize the sampling clock with the stimulation pulse so that the stimulation artefacts are never sampled, while at the same time the Nyquist-Shannon theorem is satisfied for uninterrupted LFP recording. Test results show that this method achieves true uninterrupted artefact-free LFP recording over a wide frequency band and for a wide range of stimulation frequencies.Clinical relevance-The method proposed here provides continuous and artefact-free recording of LFPs close to the stimulation target, and thereby facilitates the implementation of more advanced closed-loop DBS using LFPs as feedback.


Asunto(s)
Artefactos , Estimulación Encefálica Profunda , Encéfalo , Estudios Longitudinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA