Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(41): 35601-35609, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21840994

RESUMEN

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of α-aryl glucosides as well as α-glucosyl fluoride, thereby allowing facile, continuous assays. Reaction of TreS with 5-fluoroglycosyl fluorides results in the trapping of a covalent glycosyl-enzyme intermediate consistent with TreS being a member of the retaining glycoside hydrolase family 13 enzyme family, thus likely following a two-step, double displacement mechanism. This trapped intermediate was subjected to protease digestion followed by LC-MS/MS analysis, and Asp(230) was thereby identified as the catalytic nucleophile. The isomerization reaction was shown to be an intramolecular process by demonstration of the inability of TreS to incorporate isotope-labeled exogenous glucose into maltose or trehalose consistent with previous studies on other TreS enzymes. The absence of a secondary deuterium kinetic isotope effect and the general independence of k(cat) upon leaving group ability both point to a rate-determining conformational change, likely the opening and closing of the enzyme active site.


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Mycobacterium smegmatis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medición de Intercambio de Deuterio , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Cinética , Mycobacterium smegmatis/genética , Especificidad por Sustrato
2.
J Proteome Res ; 7(8): 3282-92, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18563928

RESUMEN

An activity-based isotope-coded affinity tagging (AB-ICAT) strategy for proteome-wide quantitation of active retaining endoglycosidases has been developed. Two pairs of biotinylated, cleavable, AB-ICAT reagents (light H(8) and heavy D(8)) have been synthesized, one incorporating a recognition element for cellulases and the other incorporating a recognition element for xylanases. The accuracy of the AB-ICAT methodology in quantifying relative glycosidase expression/activity levels in any two samples of interest has been verified using several pairs of model enzyme mixtures where one or more enzyme amounts and/or activities were varied. The methodology has been applied to the biomass-degrading secretomes of the soil bacterium, Cellulomonas fimi, under induction by different polyglycan growth substrates to obtain a quantitative profile of the relative expression/activity levels of individual active retaining endoglycanases per C. fimi cell. Such biological profiles are valuable in understanding the strategies employed by biomass-degrading organisms in exploiting environments containing different biomass polysaccharides. This is the first report on the application of an activity-based ICAT method to a biological system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cellulomonas/enzimología , Glicósido Hidrolasas/metabolismo , Proteoma/metabolismo , Proteínas Bacterianas/química , Biomasa , Celulasas/química , Celulasas/metabolismo , Deuterio , Disacáridos/síntesis química , Disacáridos/química , Glucósidos/síntesis química , Glucósidos/química , Glicósido Hidrolasas/química , Hidrógeno , Indicadores y Reactivos , Marcaje Isotópico , Proteoma/química , Microbiología del Suelo , Espectrometría de Masa por Ionización de Electrospray , Xilosidasas/química , Xilosidasas/metabolismo
3.
FEBS Lett ; 581(13): 2441-6, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17485082

RESUMEN

The mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-d-galactopyranoside (DNP2FGal) was used to inactivate the Family 42 beta-galactosidase (YesZ) from Bacillus subtilis via the trapping of a glycosyl-enzyme intermediate, thereby tagging the catalytic nucleophile in the active site. Proteolytic digestion of the inactivated enzyme and of a control sample of unlabeled enzyme, followed by comparative high-performance liquid chromatography and mass spectrometric analysis identified a labelled peptide of the sequence ETSPSYAASL. These data, combined with sequence alignments of this region with representative members of Family 42, unequivocally identify the catalytic nucleophile in this enzyme as Glu-295, thereby providing the first direct experimental proof of the identity of this residue within Family 42.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Cartilla de ADN , Cinética , Datos de Secuencia Molecular , Mapeo Peptídico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Thermus/enzimología , beta-Galactosidasa/genética
4.
J Biol Chem ; 280(42): 35126-35, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16085650

RESUMEN

New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.


Asunto(s)
Cellulomonas/enzimología , Glicósido Hidrolasas/química , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Biotinilación , Secuencia de Carbohidratos , Carbohidratos/química , Dominio Catalítico , Cromatografía Liquida , Clonación Molecular , Disacáridos/antagonistas & inhibidores , Concentración de Iones de Hidrógeno , Cinética , Espectrometría de Masas , Modelos Químicos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Proteínas/química , Proteoma/química , Proteómica/métodos , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Streptomyces/metabolismo , Temperatura , Factores de Tiempo
5.
J Biol Chem ; 279(27): 28339-44, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15075344

RESUMEN

Lipopolysaccharyl-alpha-1,4-galactosyltransferase C (LgtC), a glycosyltransferase family 8 alpha-1,4-galactosyltransferase from Neisseria meningitidis, catalyzes the transfer of galactose from UDP galactose to terminal lactose-containing acceptor sugars with net retention of anomeric configuration. To investigate the potential role of discrete nucleophilic catalysis suggested by the double displacement mechanism generally proposed for retaining glycosyltransferases, the side chain amide of Gln-189, which is suitably positioned to act as the catalytic nucleophile of LgtC, was substituted with the more nucleophilic carboxylate-containing side chain of glutamate in the hope of accumulating a glycosyl-enzyme intermediate. The resulting mutant was subjected to kinetic, mass spectrometric, and x-ray crystallographic analysis. Although the K(m) for UDP-galactose is not significantly altered, the k(cat) was reduced to 3% that of the wild type enzyme. Electrospray mass spectrometric analysis revealed that a steady state population of the Q189E variant contains a covalently bound galactosyl moiety. Liquid chromatographic/mass spectrometric analysis of fragmented proteolytic digests identified the site of labeling not as Glu-189 but, surprisingly, as the sequentially adjacent Asp-190. However, the side chain carboxylate of Asp-190 is located 8.9 A away from the donor substrate in the available crystal structure. Kinetic analysis of a D190N mutant at this position revealed a k(cat) value 3000-fold lower than that of the wild type enzyme. A 2.6-A crystal structure of the Q189E mutant with bound uridine 5'-diphospho-2-deoxy-2-fluoro-alpha-d-galactopyranose revealed no significant perturbation of the mode of donor sugar binding nor of active site configuration. This is the first trapping of an intermediate in the active site of a retaining glycosyltransferase and, although not conclusive, implicates Asp-190 as an alternative candidate catalytic nucleophile, thereby rekindling a longstanding mechanistic debate.


Asunto(s)
Ácido Aspártico/química , Proteínas Bacterianas/genética , Glicosiltransferasas/genética , Mutación , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cromatografía Liquida , Cristalografía por Rayos X , Galactosa/metabolismo , Glicosiltransferasas/metabolismo , Cinética , Lactosa/química , Espectrometría de Masas , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Neisseria meningitidis/enzimología , Péptidos/química , Estructura Terciaria de Proteína , Espectrometría de Masa por Ionización de Electrospray , Uridina Difosfato Galactosa/metabolismo
6.
J Biol Chem ; 278(48): 47394-9, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-12975375

RESUMEN

Fucose-containing glycoconjugates are key antigenic determinants in many biological processes. A change in expression levels of the enzymes responsible for tailoring these glycoconjugates has been associated with many pathological conditions and it is therefore surprising that little information is known regarding the mechanism of action of these important catabolic enzymes. Thermotoga maritima, a thermophilic bacterium, produces a wide range of carbohydrate-processing enzymes including a 52-kDa alpha-L-fucosidase that has 38% sequence identity and 56% similarity to human fucosidases. The catalytic nucleophile of this enzyme was identified to be Asp-224 within the peptide sequence 222WNDMGWPEKGKEDL235 using the mechanism-based covalent inactivator 2-deoxy-2-fluoro-alpha-L-fucosyl fluoride. The 10(4)-fold lower activity (kcat/Km) of the site-directed mutant D224A, and the subsequent rescue of activity upon addition of exogenous nucleophiles, conclusively confirms this assignment. This article presents the first direct identification of the catalytic nucleophile of an alpha-L-fucosidase, a key step in the understanding of these important enzymes.


Asunto(s)
Catálisis , Thermotoga maritima/enzimología , alfa-L-Fucosidasa/química , Alanina/química , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Conformación de Carbohidratos , Relación Dosis-Respuesta a Droga , Fucosa/química , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrólisis , Iones , Cinética , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/química , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría
7.
Biochemistry ; 42(26): 8054-65, 2003 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12834357

RESUMEN

The inclusion of both beta-D-xylosidases and alpha-L-iduronidases within the same sequence-related family (family 39), despite the considerable difference in substrate structures and poor sequence conservation around the putative nucleophile, raises concerns about whether a common mechanism is followed by the two enzymes. A novel anchimeric assistance mechanism for iduronidases involving a lactone intermediate is one possibility. NMR analysis of the methanolysis reaction catalyzed by human alpha-L-iduronidase reveals that, as with the beta-D-xylosidases, alpha-L-iduronidase is a retaining glycosidase. Using two different mechanism-based inactivators, 5-fluoro-alpha-L-iduronyl fluoride and 2-deoxy-2-fluoro-alpha-L-iduronyl fluoride, the active site nucleophile in the human alpha-L-iduronidase was identified as Glu299 within the (295)IYNDEAD(301) sequence. The equivalent, though loosely predicted, glutamic acid was identified as the nucleophile in the family 39 beta-D-xylosidase from Bacillus sp. [Vocadlo, D., et al. (1998) Biochem. J. 335, 449-455]; thus, a common mechanism involving a covalent glycosyl-enzyme intermediate that adopts the rather uncommon (2,5)B conformation is predicted.


Asunto(s)
Bacillus/enzimología , Iduronidasa/química , Iduronidasa/metabolismo , Espectrometría de Masas/métodos , Xilosidasas/química , Xilosidasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Ácido Glutámico/química , Humanos , Ácido Idurónico/análogos & derivados , Ácido Idurónico/síntesis química , Ácido Idurónico/metabolismo , Cinética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Homología de Secuencia de Aminoácido , Estereoisomerismo
8.
Biochemistry ; 42(7): 2089-103, 2003 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-12590597

RESUMEN

1-aminocyclopropane-1-carboxylate (ACC) deaminase is a pyridoxal 5'-phosphate (PLP) dependent enzyme which catalyzes the opening of the cyclopropane ring of ACC to give alpha-ketobutyric acid and ammonia. In an early study of this unusual C(alpha)-C(beta) ring cleavage reaction, 1-amino-2-methylenecyclopropane-1-carboxylic acid (2-methylene-ACC) was shown to be an irreversible inhibitor of ACC deaminase. The sole turnover product was identified as 3-methyl-2-oxobutenoic acid. These results provided strong evidence supporting the ring cleavage of ACC via a nucleophilic addition initiated process, thus establishing an unprecedented mechanism of coenzyme B(6) dependent catalysis. To gain further insight into this inactivation, tritiated 2-methylene-ACC was prepared and used to trap the critical enzyme nucleophiles. Our results revealed that inactivation resulted in the modification of an active site residue, Ser-78. However, an additional 5 equiv of inhibitor was also found to be incorporated into the inactivated enzyme after prolonged incubation. In addition to Ser-78, other nucleophilic residues modified include Lys-26, Cys-41, Cys-162, and Lys-245. The location of the remaining unidentified nucleophile has been narrowed down to be one of the residues between 150 and 180. Labeling at sites outside of the active site is not enzyme catalyzed and may be a consequence of the inherent reactivity of 2-methylene-ACC. Further experiments showed that Ser-78 is responsible for abstracting the alpha-H from d-vinylglycine and may serve as the base to remove the beta-H in the catalysis of ACC. However, it is also likely that Ser-78 serves as the active site nucleophile that attacks the cyclopropane ring and initiates the fragmentation of ACC, while the conserved Lys-51 is the base required for beta-H abstraction. Clearly, the cleavage of ACC to alpha-ketobutyrate by ACC deaminase represents an intriguing conversion beyond the common scope entailed by coenzyme B(6) dependent catalysts.


Asunto(s)
Liasas de Carbono-Carbono/química , Ácidos Carboxílicos/química , Ciclopropanos/química , Glicina/análogos & derivados , Pseudomonas/enzimología , Alanina/genética , Secuencia de Aminoácidos , Liasas de Carbono-Carbono/antagonistas & inhibidores , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/aislamiento & purificación , Catálisis , Cromatografía Líquida de Alta Presión , Clonación Molecular , Crotonatos/química , Cisteína/genética , Ácido Ditionitrobenzoico/química , Glicina/química , Cinética , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Pseudomonas/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Serina/genética , Volumetría
9.
Biochemistry ; 41(46): 13507-13, 2002 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-12427011

RESUMEN

The formation of yeast cytochrome c peroxidase (CcP) compound I has been recognized for many years to be associated with formation of two protein-centered radicals. One of these radical sites is located at Trp191 and is directly involved in catalytic oxidation of ferrocytochrome c (Sivaraja, M., Goodin, D. B., Smith, M., Hoffman, B. M. (1989) Science 245, 738-740). The second radical has been proposed to arise from one or more tyrosyl residues of CcP. However, the tyrosyl residue (or residues) capable of forming this radical has not been identified, and the functional role of this radical remains poorly understood. In the present work, this issue has been addressed through the combined use of the spin-trapping reagent 2-methyl-2-nitrosopropane and peptide mapping by electrospray mass spectrometry to identify Tyr39 and Tyr153 as two tyrosyl residues that are capable of forming radical centers upon reaction of CcP with hydrogen peroxide. The implications of this observation to the catalytic mechanism of CcP are addressed with reference to the three-dimensional structure of CcP.


Asunto(s)
Grupo Citocromo c/química , Grupo Citocromo c/metabolismo , Citocromo-c Peroxidasa/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Peróxido de Hidrógeno/metabolismo , Compuestos Nitrosos/química , Saccharomyces cerevisiae/enzimología , Tirosina/química , Citocromo-c Peroxidasa/química , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/enzimología , Humanos , Técnicas In Vitro , Modelos Químicos , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Marcadores de Spin
10.
Biochemistry ; 41(6): 1843-52, 2002 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-11827529

RESUMEN

The compound (methylenecyclopropyl)formyl-CoA (MCPF-CoA) has been reported earlier as a potent active site-directed inactivator of bovine liver enoyl-CoA hydratase (ECH). It is believed that the mechanism of inactivation involves the attack of Cys114 at C-2' of MCPF-CoA, resulting in ring cleavage and permanent covalent modification of the enzyme. Here, we describe studies with the C114A mutant of bovine liver ECH, which was constructed and purified to determine the role of this residue in the catalytic mechanism of the enzyme. The C114A mutant, which is catalytically competent, shows an unexpected susceptibility to inactivation by MCPF-CoA, indicating that Cys114 is not the primary nucleophile responsible for the inactivation of the enzyme. To determine if catalytic residues Glu115 and Glu135 play a role in the inactivation of the enzyme, the E115Q and E135Q mutants were also constructed and purified. It was determined that these mutants did not react with MCPF-CoA, indicating a possible role for both residues in the inactivation of the wild-type enzyme. Pepsin digestion and subsequent LC-MS/MS analysis of the inactivated wild-type enzyme and C114A mutant revealed that Glu115 was modified in each case, supporting the hypothesis that this residue is the true nucleophile that traps MCPF-CoA and indicating that the covalent modification of Cys114 reported earlier may be a postinactivation artifact. We propose a modified mechanism of inactivation involving Glu115 and Glu135, and suggest that MCPF-CoA may be a mechanism-based inhibitor for bovine liver ECH.


Asunto(s)
Acilcoenzima A/farmacología , Enoil-CoA Hidratasa/antagonistas & inhibidores , Enoil-CoA Hidratasa/genética , Inhibidores Enzimáticos/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Bovinos , ADN/genética , Enoil-CoA Hidratasa/química , Técnicas In Vitro , Cinética , Hígado/enzimología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...