Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Pharm Biol ; 62(1): 423-435, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38757785

RESUMEN

CONTEXT: Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE: This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS: We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS: Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION: This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Medicina Tradicional China , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales
2.
Genes (Basel) ; 15(3)2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540321

RESUMEN

Common wheat (Triticum aestivum) is a hexaploid crop comprising three diploid sub-genomes labeled A, B, and D. The objective of this study is to investigate whether there is a discernible influence pattern from the D sub-genome with epistasis in genomic models for wheat diseases. Four genomic statistical models were employed; two models considered the linear genomic relationship of the lines. The first model (G) utilized all molecular markers, while the second model (ABD) utilized three matrices representing the A, B, and D sub-genomes. The remaining two models incorporated epistasis, one (GI) using all markers and the other (ABDI) considering markers in sub-genomes A, B, and D, including inter- and intra-sub-genome interactions. The data utilized pertained to three diseases: tan spot (TS), septoria nodorum blotch (SNB), and spot blotch (SB), for synthetic hexaploid wheat (SHW) lines. The results (variance components) indicate that epistasis makes a substantial contribution to explaining genomic variation, accounting for approximately 50% in SNB and SB and only 29% for TS. In this contribution of epistasis, the influence of intra- and inter-sub-genome interactions of the D sub-genome is crucial, being close to 50% in TS and higher in SNB (60%) and SB (60%). This increase in explaining genomic variation is reflected in an enhancement of predictive ability from the G model (additive) to the ABDI model (additive and epistasis) by 9%, 5%, and 1% for SNB, SB, and TS, respectively. These results, in line with other studies, underscore the significance of the D sub-genome in disease traits and suggest a potential application to be explored in the future regarding the selection of parental crosses based on sub-genomes.


Asunto(s)
Ascomicetos , Triticum , Triticum/genética , Epistasis Genética , Fenotipo , Ascomicetos/genética
3.
Plant Genome ; 17(1): e20425, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38221748

RESUMEN

Spot blotch caused by Bipolaris sorokiniana ((Sacc.) Shoemaker) (teleomorph: Cochliobolus sativus [Ito and Kuribayashi] Drechsler ex Dastur) is an economically important disease of warm and humid regions. The present study focused on identifying resistant genotypes and single-nucleotide polymorphism (SNP) markers associated with spot blotch resistance in a panel of 174 bread spring wheat lines using field screening and genome-wide association mapping strategies. Field experiments were conducted in Agua Fria, Mexico, during the 2019-2020 and 2020-2021 cropping seasons. A wide range of phenotypic variation was observed among genotypes tested during both years. Twenty SNP markers showed significant association with spot blotch resistance on 15 chromosomes, namely, 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7B. Of these, two consistently significant SNPs on 5A, TA003225-0566 and TA003225-1427, may represent a new resistance quantitative trait loci. Further, in the proximity of Tsn1 on 5B, AX-94435238 was the most stable and consistent in both years. The identified genomic regions could be deployed to develop spot blotch-resistant genotypes, particularly in the spot blotch-vulnerable wheat growing areas.


Asunto(s)
Bipolaris , Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Estaciones del Año , Fenotipo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Genotipo
4.
Front Plant Sci ; 14: 1223959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881616

RESUMEN

The leaf blight diseases, Septoria nodorum blotch (SNB), and tan spot (TS) are emerging due to changing climatic conditions in the northern parts of India. We screened 296 bread wheat cultivars released in India over the past 20 years for seedling resistance against SNB (three experiments) and TS (two experiments). According to a genome-wide association study, six QTLs on chromosome arms 1BL, 2AS, 5BL, and 6BL were particularly significant for SNB across all three years, of which Q.CIM.snb.1BL, Q.CIM.snb.2AS1, Q.CIM.snb.2AS.2, and Q.CIM.snb.6BL appeared novel. In contrast, those on 5BS and 5BL may correspond to Snn3 and Tsn1, respectively. The allelic combination of tsn1/snn3 conferred resistance to SNB, whereas that of Tsn1/Snn3 conferred high susceptibility. As for TS, Tsn1 was the only stably significant locus identified in this panel. Several varieties like PBW 771, DBW 277, and HD 3319, were identified as highly resistant to both diseases that can be used in future wheat improvement programs as resistant donors.

5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445683

RESUMEN

Genomic prediction combines molecular and phenotypic data in a training population to predict the breeding values of individuals that have only been genotyped. The use of genomic information in breeding programs helps to increase the frequency of favorable alleles in the populations of interest. This study evaluated the performance of BLUP (Best Linear Unbiased Prediction) in predicting resistance to tan spot, spot blotch and Septoria nodorum blotch in synthetic hexaploid wheat. BLUP was implemented in single-trait and multi-trait models with three variations: (1) the pedigree relationship matrix (A-BLUP), (2) the genomic relationship matrix (G-BLUP), and (3) a combination of the two matrices (A+G BLUP). In all three diseases, the A-BLUP model had a lower performance, and the G-BLUP and A+G BLUP were statistically similar (p ≥ 0.05). The prediction accuracy with the single trait was statistically similar (p ≥ 0.05) to the multi-trait accuracy, possibly due to the low correlation of severity between the diseases.


Asunto(s)
Enfermedades de las Plantas , Triticum , Humanos , Triticum/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Genoma , Genómica , Fenotipo , Genotipo , Modelos Genéticos
6.
Biotechnol Genet Eng Rev ; : 1-25, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36942591

RESUMEN

Seed cells and scaffold materials are essential components of tissue engineering. In this study, we investigated the key pathway of the zirconia/dental pulp stem cell composite scaffold in regulating macrophage polarization by transcriptome sequencing. We established N-rGO/ZrO2 composite scaffold and confirmed its structure using various analytical techniques, including SEM, TEM, FTIR, Raman spectra, XPS, and XRD. DPSCs were seeded onto N-rGO/ZrO2 composite scaffold material, and their proliferation, adhesion, and osteogenic differentiation were evaluated by CCK-8, immunofluorescence staining, ALP staining, and alizarin red staining. We then co-cultured DPSCs combined with N-rGO/ZrO2 as composite material with THP-1 cells in a transwell system to investigate the effect of the composite on macrophage polarization. The levels of pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes were assessed by RT-qPCR and western blot. Through bulk RNA sequencing, we detected the transcriptional characteristics of macrophages under the regulation of the composite materials, and identified the differential genes using the DEseq2 package. We also analyzed the cellular and molecular functions of differentially expressed genes (DEGs) in THP-1 cells with DPSCs combined with N-rGO/ZrO2 treatment using GO enrichment analysis and KEGG pathway enrichment analysis. Our results showed that N-rGO/ZrO2 composite scaffold promoted the proliferation, adhesion, and osteogenic differentiation of DPSCs. Moreover, N-rGO/ZrO2 composite scaffold combined with DPSCs regulated macrophage migration, polarization, and glycolysis. Mechanistically, the combination of N-rGO/ZrO2 composite materials and DPSCs regulated macrophage polarization by activating the TNF signaling pathway. This finding provides a new approach to the clinical preservation of maxillofacial bone defect repair.

7.
Front Plant Sci ; 14: 1098648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895883

RESUMEN

Spot blotch (SB) caused by Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is one of the devastating diseases of wheat in the warm and humid growing areas around the world. B. sorokiniana can infect leaves, stem, roots, rachis and seeds, and is able to produce toxins like helminthosporol and sorokinianin. No wheat variety is immune to SB; hence, an integrated disease management strategy is indispensable in disease prone areas. A range of fungicides, especially the triazole group, have shown good effects in reducing the disease, and crop-rotation, tillage and early sowing are among the favorable cultural management methods. Resistance is mostly quantitative, being governed by QTLs with minor effects, mapped on all the wheat chromosomes. Only four QTLs with major effects have been designated as Sb1 through Sb4. Despite, marker assisted breeding for SB resistance in wheat is scarce. Better understanding of wheat genome assemblies, functional genomics and cloning of resistance genes will further accelerate breeding for SB resistance in wheat.

8.
Ann Transl Med ; 11(2): 90, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36819570

RESUMEN

Background: Periodontitis is a major oral condition and current treatment outcomes can be unsatisfactory. Macrophages are essential to the regeneration process, so we investigated the influence of human dental pulp stem cells (hDPSCs) on macrophage differentiation and the microenvironment and the underlying mechanism. Methods: hDPSCs were isolated from healthy third molars extracted from patients undergoing maxillofacial surgery. The surface antigens CD73, CD45, CD90 and CD11b of the hDPSCs were detected using flow cytometry. hDPSCs were induced for osteogenic and adipogenic differentiation, and the outcome was assessed by alizarin red staining or Oil Red O staining. The IL-6 level released by hDPSCs was measured by enzyme linked immunosorbent assay (ELISA). Tohoku Hospital Pediatrics-1 (THP-1) cells were cultured and induced into macrophages by phorbol-12-myristate-13-acetate. After coculture of THP-1-derived macrophages with hDPSCs, interleukin 6 (IL-6), Argininase-1 (Arg-1), Mannose receptor C-1 (Mrc-1), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) levels in the medium were measured using ELISA and quantificational RT-PCR (qRT-PCR). The numbers of CD80+ and CD163+ macrophages were counted by immunofluorescence, and GP130/STAT3 signaling protein expression was detected. After coculturing the culture medium of hDPSCs with human bone marrow stem cells (BMSCs), scratch assays and transwell assays were performed to evaluate cell migration and invasion. Results: Alkaline phosphatase (ALP) staining, alizarin red staining, and western blots were performed to assess osteoblast differentiation. The hDPSCs were positive for surface antigens CD73 and CD90 and negative for CD45 and CD11b expression. The level of IL-6 secreted by hDPSCs significantly increased the number of CD80+ cells as well as the levels of Arg-1 and Mrc-1. It also promoted M2 macrophage polarization and activated GP130/STAT3 signaling. However, the medium cocultured with THP-1-derived macrophages by hDPSCs facilitated the migration, invasion, and osteogenic abilities of human bone marrow-derived stem cells (hBMSCs). Conclusions: hDPSCs can regulate the periodontal microenvironment through IL-6 by inducing phenotypic transformation of M2 macrophages and stimulating osteogenic differentiation of BMSCs.

9.
Environ Sci Pollut Res Int ; 30(12): 34952-34965, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36525199

RESUMEN

Public acceptance is important for the provision of potentially hazardous facilities and may be affected by many factors such as perceived risk/benefit/stress/fairness and public trust. In this study, the underlying mechanism behind the influence of perceived stress on public acceptance of waste-to-energy (WTE) incinerators was explored by structural equation modeling of a face-to-face questionnaire survey of 1066 urban residents in three regional central cities in China. The results indicate that, firstly, the perceived stress of the laypeople has an impact on their acceptance by influencing risk/fairness they perceived and public trust. Secondly, the paths of influence of individual perceptions on acceptance differ between cities with different economic, cultural, and social characteristics. Perceived stress mainly affects public acceptance through perceived risk in the eastern residents while perceived stress mainly affects public acceptance through public trust in the western residents. The findings clarify the theoretical role of perceived stress in shaping laypeople's acceptance of potentially hazardous facilities which are of value for both governments and owners in siting potentially hazardous facilities.


Asunto(s)
Incineración , Estrés Psicológico , Ciudades , Encuestas y Cuestionarios , China
10.
Front Psychol ; 13: 948653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389485

RESUMEN

Demographic characteristics have been recognized as an important factor affecting public acceptance of waste-to-energy (WTE) incineration facilities. The present study explores whether the differences in public acceptance of WTE incineration facilities caused by demographic characteristics are consistent in residential groups under different perceived stress using data collected by a large-scale questionnaire survey (1,066 samples) conducted in three second-tier cities in China. The result of data analysis using a T-test (one-way ANOVA) shows firstly that people with low perceived stress have higher public acceptance of WTE incineration facilities. Second, the differences in public acceptance of WTE incineration facilities caused by demographic characteristics (gender, educational attainment, and age) vary in residential groups with different perceived stress levels. The findings enrich the knowledge system related to demographic characteristics research on NIMBY infrastructure projects and provide the theoretical basis for the government to formulate more targeted policies about NIMBY infrastructure sitting.

11.
Front Genet ; 13: 988264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246592

RESUMEN

Fusarium head blight (FHB) of wheat is an important disease worldwide, affecting the yield, end-use quality and threatening food safety. Genetic resources or stable loci for FHB resistance are still limited in breeding programs. A panel of 265 bread wheat accessions from China, CIMMYT-Mexico and other countries was screened for FHB resistance under 5 field experiments in Mexico and China, and a genome-wide association analysis was performed to identify QTLs associated with FHB resistance. The major locus Fhb1 was significantly associated with FHB severity and Deoxynivalenol content in grains. FHB screening experiments in multiple environments showed that Fhb1-harbouring accessions Sumai3, Sumai5, Ningmai9, Yangmai18 and Tokai66 had low FHB index, disease severity and DON content in grains in response to different Fusarium species and ecological conditions in Mexico and China. Accessions Klein Don Enrique, Chuko and Yumai34 did not have Fhb1 but still showed good FHB resistance and low mycotoxin accumulation. Sixteen loci associated with FHB resistance or DON content in grains were identified on chromosomes 1A, 1B, 2B, 3A, 3D, 4B, 4D, 5A, 5B, 7A, and 7B in multiple environments, explaining phenotypic variation of 4.43-10.49%. The sources with good FHB resistance reported here could be used in breeding programs for resistance improvement in Mexico and China, and the significant loci could be further studied and introgressed for resistance improvement against FHB and mycotoxin accumulation in grains.

12.
Genes (Basel) ; 13(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36011298

RESUMEN

Spot blotch (SB) caused by Bipolaris sorokiniana (Sacc.) Shoem is a destructive fungal disease affecting wheat and many other crops. Synthetic hexaploid wheat (SHW) offers opportunities to explore new resistance genes for SB for introgression into elite bread wheat. The objectives of our study were to evaluate a collection of 441 SHWs for resistance to SB and to identify potential new genomic regions associated with the disease. The panel exhibited high SB resistance, with 250 accessions showing resistance and 161 showing moderate resistance reactions. A genome-wide association study (GWAS) revealed a total of 41 significant marker-trait associations for resistance to SB, being located on chromosomes 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5D, 6D, 7A, and 7D; yet none of them exhibited a major phenotypic effect. In addition, a partial least squares regression was conducted to validate the marker-trait associations, and 15 markers were found to be most important for SB resistance in the panel. To our knowledge, this is the first GWAS to investigate SB resistance in SHW that identified markers and resistant SHW lines to be utilized in wheat breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
13.
Genes (Basel) ; 13(4)2022 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-35456402

RESUMEN

Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq® technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
14.
J Transl Med ; 20(1): 148, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365168

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC), as one of the commonest malignancies showing poor prognosis, has been increasingly suggested to be modulated by circular RNAs (circRNAs). Through GEO (Gene Expression Omnibus) database, a circRNA derived from ZDBF2 (circZDBF2) was uncovered to be with high expression in OSCC tissues, while how it may function in OSCC remains unclear. METHODS: CircZDBF2 expression was firstly verified in OSCC cells via qRT-PCR. CCK-8, along with colony formation, wound healing, transwell and western blot assays was performed to assess the malignant cell behaviors in OSCC cells. Further, RNA pull down assay, RIP assay, as well as luciferase reporter assay was performed to testify the interaction between circZDBF2 and RNAs. RESULTS: CircZDBF2 expressed at a high level in OSCC cells and it accelerated OSCC cell proliferation, migration, invasion as well as EMT (epithelial-mesenchymal transition) process. Further, circZDBF2 sponged miR-362-5p and miR-500b-5p in OSCC cells to release their target ring finger protein 145 (RNF145). RNF145 expressed at a high level in OSCC cells and circZDBF2 facilitated RNF145 transcription by recruiting the transcription factor CCAAT enhancer binding protein beta (CEBPB). Moreover, RNF145 activated NFκB (nuclear factor kappa B) signaling pathway and regulated IL-8 (C-X-C motif chemokine ligand 8) transcription. CONCLUSION: CircZDBF2 up-regulated RNF145 expression by sponging miR-362-5p and miR-500b-5p and recruiting CEBPB, thereby promoting OSCC progression via NFκB signaling pathway. The findings recommend circZDBF2 as a probable therapeutic target for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Proteínas de la Membrana , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , FN-kappa B/metabolismo , Transducción de Señal/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
15.
Theor Appl Genet ; 135(6): 1965-1983, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416483

RESUMEN

KEY MESSAGE: Genomic selection is a promising tool to select for spot blotch resistance and index-based selection can simultaneously select for spot blotch resistance, heading and plant height. A major biotic stress challenging bread wheat production in regions characterized by humid and warm weather is spot blotch caused by the fungus Bipolaris sorokiniana. Since genomic selection (GS) is a promising selection tool, we evaluated its potential for spot blotch in seven breeding panels comprising 6736 advanced lines from the International Maize and Wheat Improvement Center. Our results indicated moderately high mean genomic prediction accuracies of 0.53 and 0.40 within and across breeding panels, respectively which were on average 177.6% and 60.4% higher than the mean accuracies from fixed effects models using selected spot blotch loci. Genomic prediction was also evaluated in full-sibs and half-sibs panels and sibs were predicted with the highest mean accuracy (0.63) from a composite training population with random full-sibs and half-sibs. The mean accuracies when full-sibs were predicted from other full-sibs within families and when full-sibs panels were predicted from other half-sibs panels were 0.47 and 0.44, respectively. Comparison of GS with phenotypic selection (PS) of the top 10% of resistant lines suggested that GS could be an ideal tool to discard susceptible lines, as greater than 90% of the susceptible lines discarded by PS were also discarded by GS. We have also reported the evaluation of selection indices to simultaneously select non-late and non-tall genotypes with low spot blotch phenotypic values and genomic-estimated breeding values. Overall, this study demonstrates the potential of integrating GS and index-based selection for improving spot blotch resistance in bread wheat.


Asunto(s)
Ascomicetos , Triticum , Pan , Genómica , Humanos , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
16.
Front Plant Sci ; 13: 835095, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310648

RESUMEN

Spot blotch caused by the fungus Bipolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions of the world. Hence, the major objective of this study was to identify consistent genotyping-by-sequencing (GBS) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced bread wheat breeding lines from the International Maize and Wheat Improvement Center. These lines were phenotyped as seven panels at Agua Fria, Mexico between the 2013-2014 and 2019-2020 crop cycles. We identified 214 significant spot blotch associated GBS markers in all the panels, among which only 96 were significant in more than one panel, indicating a strong environmental effect on the trait and highlights the need for multiple phenotypic evaluations to identify lines with stable spot blotch resistance. The 96 consistent GBS markers were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, including markers possibly linked to the Lr46, Sb1, Sb2 and Sb3 genes. We also report the association of the 2NS translocation from Aegilops ventricosa with spot blotch resistance in some environments. Moreover, the spot blotch favorable alleles at the 2NS translocation and two markers on chromosome 3BS (3B_2280114 and 3B_5601689) were associated with increased grain yield evaluated at several environments in Mexico and India, implying that selection for favorable alleles at these loci could enable simultaneous improvement for high grain yield and spot blotch resistance. Furthermore, a significant relationship between the percentage of favorable alleles in the lines and their spot blotch response was observed, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance. Overall, the results presented here have extended our knowledge on the genetic basis of spot blotch resistance in bread wheat and further efforts to improve genetic resistance to the disease are needed for reducing current and future losses under climate change.

17.
Plants (Basel) ; 11(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35161413

RESUMEN

Synthetic hexaploid wheat (SHW) has shown effective resistance to a diversity of diseases and insects, including tan spot, which is caused by Pyrenophora tritici-repentis, being an important foliar disease that can attack all types of wheat and several grasses. In this study, 443 SHW plants were evaluated for their resistance to tan spot under controlled environmental conditions. Additionally, a genome-wide association study was conducted by genotyping all entries with the DArTSeq technology to identify marker-trait associations for tan spot resistance. Of the 443 SHW plants, 233 showed resistant and 183 moderately resistant reactions, and only 27 were moderately susceptible or susceptible to tan spot. Durum wheat (DW) parents of the SHW showed moderately susceptible to susceptible reactions. A total of 30 significant marker-trait associations were found on chromosomes 1B (4 markers), 1D (1 marker), 2A (1 marker), 2D (2 markers), 3A (4 markers), 3D (3 markers), 4B (1 marker), 5A (4 markers), 6A (6 markers), 6B (1 marker) and 7D (3 markers). Increased resistance in the SHW in comparison to the DW parents, along with the significant association of resistance with the A and B genome, supported the concept of activating epistasis interaction across the three wheat genomes. Candidate genes coding for F-box and cytochrome P450 proteins that play significant roles in biotic stress resistance were identified for the significant markers. The identified resistant SHW lines can be deployed in wheat breeding for tan spot resistance.

18.
Heredity (Edinb) ; 128(6): 402-410, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34880420

RESUMEN

Wheat head blast is a dangerous fungal disease in South America and has recently spread to Bangladesh and Zambia, threatening wheat production in those regions. Host resistance as an economical and environment-friendly management strategy has been heavily relied on, and understanding the resistance loci in the wheat genome is very helpful to resistance breeding. In the current study, two recombinant inbred line (RIL) populations, Alondra/Milan (with 296 RILs) and Caninde#2/Milan-S (with 254 RILs and Milan-S being a susceptible variant of Milan), were used for mapping QTL associated with head blast resistance in field experiments. Phenotyping was conducted in Quirusillas and Okinawa, Bolivia, and in Jashore, Bangladesh, during the 2017-18 and 2018-19 cropping cycles. The DArTseq® technology was employed to genotype the lines, along with four STS markers in the 2NS region. A QTL with consistent major effects was mapped on the 2NS/2AS translocation region in both populations, explaining phenotypic variation from 16.7 to 79.4% across experiments. Additional QTL were detected on chromosomes 2DL, 7AL, and 7DS in the Alondra/Milan population, and 2BS, 4AL, 5AS, 5DL, 7AS, and 7AL in the Caninde#2/Milan-S population, all showing phenotypic effects <10%. The results corroborated the important role of the 2NS/2AS translocation on WB resistance and identified a few novel QTL for possible deployment in wheat breeding. The low phenotypic effects of the non-2NS QTL warrantee further investigation for novel QTL with higher and more stable effects against WB, to alleviate the heavy reliance on 2NS-based resistance.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/genética
19.
Plants (Basel) ; 10(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34961165

RESUMEN

Wheat blast (WB) disease, since its first identification in Bangladesh in 2016, is now an established serious threat to wheat production in South Asia. There is a need for sound knowledge about resistance sources and associated genomic regions to assist breeding programs. Hence, a panel of genotypes from India and Bangladesh was evaluated for wheat blast resistance and a genome-wide association study (GWAS) was performed. Disease evaluation was done during five crop seasons-at precision phenotyping platform (PPPs) for wheat blast disease at Jashore (2018-19), Quirusillas (2018-19 and 2019-20) and Okinawa (2019 and 2020). Single nucleotide polymorphisms (SNP) across the genome were obtained using DArTseq genotyping-by-sequencing platform, and in total 5713 filtered markers were used. GWAS revealed 40 significant markers associated with WB resistance, of which 33 (82.5%) were in the 2NS/2AS chromosome segment and one each on seven chromosomes (3B, 3D, 4A, 5A, 5D, 6A and 6B). The 2NS markers contributed significantly in most of the environments, explaining an average of 33.4% of the phenotypic variation. Overall, 22.4% of the germplasm carried 2NS/2AS segment. So far, 2NS translocation is the only effective WB resistance source being used in the breeding programs of South Asia. Nevertheless, the identification of non-2NS/2AS genomic regions for WB resistance provides a hope to broaden and diversify resistance for this disease in years to come.

20.
Front Psychol ; 12: 722261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744887

RESUMEN

Previous studies have found a correlation between numerosity processing and arithmetical performance. Visual perception has already been indicated as the shared cognitive mechanism between these two; however, these studies mostly focused on children. It is not clear whether the association between numerosity processing and arithmetical performance still existed following the development of individual arithmetical performance. Consequently, the underlying role of visual perception in numerosity processing and arithmetical performance has not been sufficiently studied in adults. For this study, researchers selected a total of 205 adult participants with an average age of 22years. The adults were administered arithmetic tests, numerosity comparison, and visual figure matching. Mental rotation, choice reaction time, and nonverbal intelligence were used as cognitive covariates. Results showed that numerosity comparison of adults correlated with their arithmetical performance, even after controlling for age and gender differences as well as general cognitive processing. However, after controlled for visual figure matching, the well-established association between numerosity comparison and arithmetic performance disappeared. These results supported the visual perception hypothesis, that visual perception measured by visual figure matching can account for the correlation between numerosity comparison and arithmetic performance. This indicated that even for adult populations, visual perceptual ability was the underlying component of numerosity processing and arithmetic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...