Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008811

RESUMEN

Traumatic nerve injury activates cell stress pathways, resulting in neuronal death and loss of vital neural functions. To date, there are no available neuroprotectants for the treatment of traumatic neural injuries. Here, we studied three important flavanones of citrus components, in vitro and in vivo, to reveal their roles in inhibiting the JNK (c-Jun N-terminal kinase)-JUN pathway and their neuroprotective effects in the optic nerve crush injury model, a kind of traumatic nerve injury in the central nervous system. Results showed that both neural injury in vivo and cell stress in vitro activated the JNK-JUN pathway and increased JUN phosphorylation. We also demonstrated that naringenin treatment completely inhibited stress-induced JUN phosphorylation in cultured cells, whereas nobiletin and hesperidin only partially inhibited JUN phosphorylation. Neuroprotection studies in optic nerve crush injury mouse models revealed that naringenin treatment increased the survival of retinal ganglion cells after traumatic optic nerve injury, while the other two components had no neuroprotective effect. The neuroprotection effect of naringenin was due to the inhibition of JUN phosphorylation in crush-injured retinal ganglion cells. Therefore, the citrus component naringenin provides neuroprotection through the inhibition of the JNK-JUN pathway by inhibiting JUN phosphorylation, indicating the potential application of citrus chemical components in the clinical therapy of traumatic optic nerve injuries.


Asunto(s)
Citrus/química , Lesiones por Aplastamiento/enzimología , Flavanonas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Compresión Nerviosa , Neuronas/patología , Nervio Óptico/patología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Lesiones por Aplastamiento/patología , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Estrés Fisiológico/efectos de los fármacos
2.
Neurosci Lett ; 739: 135436, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33132179

RESUMEN

Dry needling treatment has a promising relieving effect on Myofascial Pain Syndrome (MPS). In China, acupuncture practitioners use acupuncture needle instead to insert the "A-Shi" acupoint to treat MPS which is defined as the same as the trigger point of dry needling. This method has been applied for thousands of years in China. In this study, bupivacaine injection induced gastrocnemius muscle injury in mice. We applied the clinical improved needling method on animal model by making the angle between the skin and needle less than 30 degree. Animals got needling treatment 24 h later at the point where the bupivacaine was injected. Results of muscle H.E. staining showed that, compared to bupivacaine injection group without needling, acupuncture treatment group showed more intact muscle fibers, less inflammatory cell infiltration and fractured muscle fibers. By RNA sequencing analysis, our work firstly demonstrated that the physical stimulation of needling changed the gene expression of muscle tissue to accelerate the muscular regeneration process. Therefore, our study proved that simple needling at "A-Shi" acupoint promoted muscle regeneration and revealed underlying mechanisms of the beneficial effects of acupuncture and dry needle treatments.


Asunto(s)
Terapia por Acupuntura/métodos , Bupivacaína/administración & dosificación , Punción Seca , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Regeneración , Animales , Expresión Génica , Ontología de Genes , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Puntos Disparadores
3.
Front Integr Neurosci ; 14: 568449, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117136

RESUMEN

Optic neuritis (ON) is one of the most frequent symptoms of multiple sclerosis (MS) that results in progressive loss of axons and neurons. In clinical trials of Traditional Chinese Medicine, needling at the GB20 acupoint has been widely used for the treatment of ocular diseases, including ON. However, the molecular mechanisms of needling at this site are still unclear. In this study, we generated an experimental autoimmune encephalomyelitis (EAE) mouse model and investigated the effects of needling treatment at the GB20 acupoint on retina with EAE-associated ON. RNA sequencing of the retinal transcriptome revealed that, of the 234 differentially expressed genes induced by ON, 100 genes were upregulated, and 134 genes were downregulated by ON, while needling at the GB20 acupoint specifically reversed the expression of 21 genes compared with control treatment at GV16 acupoint. Among the reversed genes, Nr4a3, Sncg, Uchl1, and Tppp3 were involved in axon development and regeneration and were downregulated by ON, indicating the beneficial effect of needling at GB20. Further gene ontology (GO) enrichment analysis revealed that needling at GB20 affected the molecular process of Circadian rhythm in mouse retina with ON. Our study first reported that needling treatment after ON at the GB20 acupoint regulated gene expression of the retina and reversed the expression of downregulated axon development-related genes. This study also demonstrated that GV16 was a perfect control treatment site for GB20 in animal research. Our study provided a scientific basis for needling treatments at GB20 for ocular diseases.

4.
Front Integr Neurosci ; 13: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680887

RESUMEN

Glaucoma and traumatic optic nerve crush (ONC) injury result in progressive loss of retinal ganglion cells (RGCs) and defects in visual function. In clinical trials of Traditional Chinese Medicine, acupuncture has been widely used for the treatment of ocular diseases. However, the molecular mechanisms of acupuncture treatment are still unclear. In this study, we used technique of RNA sequencing (RNA-seq) to study the effects of acupuncture treatment on retinal transcriptome after axotomy injury. RNA-seq results revealed that 436 genes including 31 transcription factors (TFs) were changed after injury, among them were many well-known neural degeneration related TFs such as Jun, Ddit3, Atf3, and Atf4. Interestingly, acupuncture treatment at acupoint GB20 (Fengchi) significantly reversed a series of differential expressed genes (DEGs) induced by optic nerve injury. While treatments at BL1 (Jingming) or GB20 sham control acupoint-GV16 (Fengfu), led to limited DEG reversal. In contrast, treatments at these two sites further enhanced the trend of DEG expression induced by axotomy injury. At last, retina immunostaining results revealed that only GB20 acupoint treatment increased RGC survival, in consistent with RNA-seq results. Therefore, our study first reported that acupuncture treatment regulated retinal transcriptome and reversed the gene expression induced by axotomy injury, and GB20 acupoint treatment increased RGC survival, which will provide novel therapeutic targets for treatment of ocular diseases.

5.
Front Integr Neurosci ; 13: 38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496944

RESUMEN

Chronic pain is a major health problem, which can impair quality of life and reduce productivity. Electroacupuncture (EA), a modality of medicine based on the theories of Traditional Chinese Medicine (TCM), presents great therapeutic effects on chronic pain. Its clinical application has gained increasing popularity, and in parallel, more research has been performed on the mechanisms of EA-induced analgesia. The past decades have seen enormous advances both in neuronal circuitry of needle-insertion and in its molecular mechanism. EA may block pain by activating the descending pain inhibitory system, which originates in the brainstem and terminates at the spinal cord. This review article synthesizes corresponding studies to elucidate how EA alleviate pain via the mediation of this descending system. Much emphasis has been put on the implication of descending serotonergic and noradrenergic pathways in the process of pain modulation. Also, other important transmitters and supraspinal regions related to analgesic effects of EA have been demonstrated. Finally, it should be noticed that there exist some shortcomings involved in the animal experimental designed for EA, which account for conflicting results obtained by different studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...