Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(5): 3597-3604, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38356389

RESUMEN

A very mild and efficient procedure has been developed for the preparation of N-methylated uridine, pseudouridine, guanosine and inosine derivatives. This process was compatible with free hydroxyls within the ribose and did not require precautions on the protection or deprotection of other functionalities. The key to this extremely mild methylation without protection relied on the in situ generated methyl oxonium from the Wittig reagent and methanol. A putative mechanism for the selective methylation was also proposed.

2.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175124

RESUMEN

Cyclooctyne molecules have found wide applications in the strain-promoted azide-alkyne cycloaddition (SPAAC) reactions, which avoid the biotoxicity caused by the use of Cu(I) catalysts. Among the various cyclooctyne systems, dibenzocyclooctyne (DBCO) series have displayed the highest reaction activity. However, the synthesis processes of such structures are time-consuming, which to some extent limit their large-scale development and application. This review has summarized current synthesis routes of two DBCO molecules, aza-dibenzocyclooctyne (DIBAC) and biarylazacyclooctynone (BARAC).

3.
Inorg Chem ; 62(15): 5920-5930, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37017463

RESUMEN

Triplet photovoltaic materials have been rarely investigated in organic solar cells (OSCs) because the role and mechanism of triplet excitons are still unclear. Cyclometalated heavy metal complexes with triplet features are expected to increase exciton diffusion lengths and improve exciton dissociation in OSCs, while the power conversion efficiencies (PCEs) of their bulk-heterojunction (BHJ) OSCs are still limited to <4%. We herein report an octahedral homoleptic tris-Ir(III) complex TBz3Ir as a donor material for BHJ OSCs with a PCE of over 11%. In comparison with the planar organic TBz ligand and heteroleptic TBzIr, TBz3Ir demonstrates the highest PCE and best device stability in both fullerene- and non-fullerene-based devices, owing to the long triplet lifetime, enhanced optical absorption, increased charge transport, and improved film morphology. From transient absorption, triplet excitons were deduced to participate in the photoelectric conversion process. In particular, the more significant 3D structure of TBz3Ir induces an unusual film morphology in TBz3Ir:Y6 blends, showing obviously large domain sizes suitable for triplet excitons. Thus, a high PCE of 11.35% with a high circuit current density of 24.17 mA cm-2 and a fill factor of 0.63 is achieved for small-molecular Ir complex-based BHJ OSCs.

4.
Macromol Rapid Commun ; 43(22): e2100828, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35032076

RESUMEN

In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45°  between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted lowest unoccupied molecular orbital by 0.4 eV as well as blueshifted absorption by up to 150 nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954 V compared to 4.47% and 0.739 V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE.

5.
Dalton Trans ; 50(28): 9871-9880, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34195721

RESUMEN

Cyclometalated iridium(iii) complexes have been investigated as promising electron donor (D) materials in organic solar cells (OSCs) due to their unique octahedral configuration for optimized morphology and their significantly long lifetimes potentially for enhanced exciton dissociation. However, the application as electron acceptor (A) materials has never been reported. In order to fill this blank, herein, two cyclometalated heteroleptic Ir complexes, TRIr and 2TRIr, based on electron donating-accepting type organic ligands with different π-conjugation lengths are reported as electron acceptor materials in comparison with their corresponding main organic ligands. The two Ir complexes exhibit suitable HOMO/LUMO energy levels of -5.55/-3.47 eV and -5.44/-3.48 eV, which are ∼0.1 eV higher in the HOMO and ∼0.15 eV deeper in the LUMO than the TR and 2TR ligands, respectively. 2TRIr with extended ligand π-conjugation displays a poor triplet feature, while TRIr demonstrates obvious metal-to-ligand charge transfer (MLCT) transition absorption, with a triplet component photoluminescence (PL) lifetime of 85 ns in neat films. When blended with PBDB-T in bulk heterojunction (BHJ) OSCs, the power conversion efficiencies (PCEs) are 2-3 times higher than their relevant ligands, with values of 1.20% and 1.62% for TRIr and 2TRIr, and 0.58% and 0.47% for the TR and 2TR ligand-based devices, respectively. TRIr and 2TRIr based active layer blends exhibit poorer hole and electron mobilities, whereas compared with their relatively linear planar ligands, both of the two octahedral Ir complexes exhibit an optimized surface morphology for less bimolecular recombination and more efficient exciton dissociation, thus contributing to improved photovoltaic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA