Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.529
1.
Mol Neurobiol ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38722514

Major depressive disorder (MDD) is a severe mental illness characterized by a lack of objective biomarkers. Mounting evidence suggests there are extensive transcriptional molecular changes in the prefrontal cortex (PFC) of individuals with MDD. However, it remains unclear whether there are specific genes that are consistently altered and possess diagnostic power. In this study, we conducted a systematic search of PFC datasets of MDD patients from the Gene Expression Omnibus database. We calculated the differential expression of genes (DEGs) and identified robust DEGs using the RRA and MetaDE methods. Furthermore, we validated the consistently altered genes and assessed their diagnostic power through enzyme-linked immunosorbent assay experiments in our clinical blood cohort. Additionally, we evaluated the diagnostic power of hub DEGs in independent public blood datasets. We obtained eight PFC datasets, comprising 158 MDD patients and 263 healthy controls, and identified a total of 1468 unique DEGs. Through integrated analysis, we identified 290 robustly altered DEGs. Among these, seven hub DEGs (SLC1A3, PON2, AQP1, EFEMP1, GJA1, CENPD, HSD11B1) were significantly down-regulated at the protein level in our clinical blood cohort. Moreover, these hub DEGs exhibited a negative correlation with the Hamilton Depression Scale score (P < 0.05). Furthermore, these hub DEGs formed a panel with promising diagnostic power in three independent public blood datasets (average AUCs of 0.85) and our clinical blood cohort (AUC of 0.92). The biomarker panel composed of these genes demonstrated promising diagnostic efficacy for MDD and serves as a useful tool for its diagnosis.

2.
Opt Lett ; 49(10): 2841-2844, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748175

Direct optical detection and imaging of single nanoparticles on a substrate in wide field underpin vast applications across different research fields. However, speckles originating from the unavoidable random surface undulations of the substrate ultimately limit the size of the decipherable nanoparticles by the current optical techniques, including the ultrasensitive interferometric scattering microscopy (iSCAT). Here, we report a defocus-integration iSCAT to suppress the speckle noise and to enhance the detection and imaging of single nanoparticles on an ultra-flat glass substrate and a silicon wafer. In particular, we discover distinct symmetry properties of the scattering phase between the nanoparticle and the surface undulations that cause the speckles. Consequently, we develop the defocus-integration technique to suppress the speckles. We experimentally achieve an enhancement of the signal-to-noise ratio by 6.9 dB for the nanoparticle detection. We demonstrate that the technique is generally applicable for nanoparticles of various materials and for both low and high refractive index substrates.

3.
Materials (Basel) ; 17(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38730776

As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.

4.
Int J Biol Sci ; 20(7): 2422-2439, 2024.
Article En | MEDLINE | ID: mdl-38725842

Background & Aims: Reactive oxygen species (ROS) act as modulators triggering cellular dysfunctions and organ damage including liver fibrosis in which hepatic stellate cell (HSC) activation plays a key role. Previous studies suggest that microRNA-144 (miR-144) acts as a pro-oxidant molecule; however, whether and how miR-144 affects HSC activation and liver fibrosis remain unknown. Methods: Carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced experimental liver fibrosis models were used. Hepatic miR-144 expression was analyzed by miRNA in situ hybridization with RNAscope probe. The in vivo effects of silencing or overexpressing miR-144 were examined with an adeno-associated virus 6 (AAV6) carrying miR-144 inhibitor or mimics in fibrotic mouse experimental models. Results: In this study, we demonstrated that ROS treatment significantly upregulated miR-144 in HSCs, which further promoted HSC activation in vitro. Interestingly, miR-144 was preferentially elevated in HSCs of experimental liver fibrosis in mice and in human liver fibrotic tissues. Furthermore, in vivo loss or gain-of-function experiments via AAV6 carrying miR-144 antagomir or agomir revealed that blockade of miR-144 in HSCs mitigated, while overexpression of miR-144 in HSCs accelerated the development of experimental liver fibrosis. Mechanistically, SIN3 transcription regulator family member A (SIN3A), a transcriptional repressor, was identified to be the target of miR-144 in HSCs. MiR-144 downregulated Sin3A, and in line with this result, specific knockdown of Sin3a in HSCs remarkedly activated p38 MAPK signaling pathway to promote HSC activation, eventually exacerbating liver fibrosis. Conclusions: Oxidative stress-driven miR-144 fuels HSC activation and liver fibrogenesis by limiting the SIN3A-p38 axis. Thus, a specific inhibition of miR-144 in HSCs could be a novel therapeutic strategy for the treatment of liver fibrosis.


Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Oxidative Stress , Reactive Oxygen Species , Sin3 Histone Deacetylase and Corepressor Complex , p38 Mitogen-Activated Protein Kinases , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Reactive Oxygen Species/metabolism , Male , Mice, Inbred C57BL , Repressor Proteins/metabolism , Repressor Proteins/genetics , Carbon Tetrachloride
5.
Water Res ; 257: 121715, 2024 May 02.
Article En | MEDLINE | ID: mdl-38728779

High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl- to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways. Our results show that the presence of Cl- alters the cleavage behavior of the peroxide OO bond in PMS and prohibits the generation of Fe(IV), spontaneously promoting SO4•- production and its subsequent transformation to secondary radicals like Cl• and Cl2•-. The generation and oxidation capacity of Mn(V)NTA was scarcely influenced by Cl-, while Cl- would substantially consume Co(IV) and promote HOCl generation through an oxygen-transfer reaction, evidenced by density functional theory (DFT) and deuterium oxide solvent exchange experiment. The two-electron-transfer standard redox potentials of Fe(IV), Mn(V)NTA and Co(IV) were calculated as 2.43, 2.55 and 2.85 V, respectively. Due to the different reactive species and pathways in the presence of Cl-, the amounts of chlorinated by-products followed the order of Co(II)/PMS > Fe(II)/PMS > Mn(II)NTA/PMS. Thus, this work renovates the knowledge of halide chemistry in HMOS-based systems and sheds light on the impact on the treatment of salinity-containing wastewater.

6.
Food Res Int ; 186: 114401, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729704

Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.


Electronic Nose , Fermentation , Spectroscopy, Near-Infrared , Taste , Tea , Tea/chemistry , Tea/microbiology , Spectroscopy, Near-Infrared/methods , Odorants/analysis , Chemometrics/methods , Humans , Fungi/metabolism , Machine Learning , Volatile Organic Compounds/analysis
7.
BMC Gastroenterol ; 24(1): 178, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773451

BACKGROUND: A growing body of research suggests that heat shock proteins (HSPs) may serve as diagnostic biomarkers for hepatocellular carcinoma (HCC), but their results are still controversial. This meta-analysis endeavors to evaluate the diagnostic accuracy of HSPs both independently and in conjunction with alpha-fetoprotein (AFP) as novel biomarkers for HCC detection. METHODS: Pooled statistical indices, including sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) with 95% confidence intervals (CI), were computed to assess the diagnostic accuracy of HSPs, AFP, and their combinations. Additionally, the area under the summary receiver operating characteristic (SROC) curve (AUC) was determined. RESULTS: A total of 2013 HCC patients and 1031 control subjects from nine studies were included in this meta-analysis. The summary estimates for HSPs and AFP are as follows: sensitivity of 0.78 (95% CI: 0.69-0.85) compared to 0.73 (95% CI: 0.65-0.80); specificity of 0.89 (95% CI: 0.81-0.95) compared to 0.86 (95% CI: 0.77-0.91); PLR of 7.4 (95% CI: 3.7-14.9) compared to 5.1 (95% CI: 3.3-8.1); NLR of 0.24 (95% CI: 0.16-0.37) compared to 0.31 (95% CI: 0.24-0.41); DOR of 30.19 (95% CI: 10.68-85.37) compared to 16.34 (95% CI: 9.69-27.56); and AUC of 0.90 (95% CI: 0.87-0.92) compared to 0.85 (95% CI: 0.82-0.88). The pooled sensitivity, specificity, PLR, NLR, DOR and AUC were 0.90 (95% CI: 0.82-0.95), 0.94 (95% CI: 0.82-0.98), 14.5 (95% CI: 4.6-45.4), 0.11 (95% CI: 0.06-0.20), 133.34 (95% CI: 29.65-599.61), and 0.96 (95% CI: 0.94-0.98) for the combination of HSPs and AFP. CONCLUSION: Our analysis suggests that HSPs have potential as a biomarker for clinical use in the diagnosis of HCC, and the concurrent utilization of HSPs and AFP shows notable diagnostic effectiveness for HCC.


Biomarkers, Tumor , Carcinoma, Hepatocellular , Heat-Shock Proteins , Liver Neoplasms , Sensitivity and Specificity , alpha-Fetoproteins , alpha-Fetoproteins/analysis , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/blood , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/blood , Biomarkers, Tumor/blood , Heat-Shock Proteins/blood , ROC Curve , Area Under Curve
8.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38771241

The functional brain connectome is highly dynamic over time. However, how brain connectome dynamics evolves during the third trimester of pregnancy and is associated with later cognitive growth remains unknown. Here, we use resting-state functional Magnetic Resonance Imaging (MRI) data from 39 newborns aged 32 to 42 postmenstrual weeks to investigate the maturation process of connectome dynamics and its role in predicting neurocognitive outcomes at 2 years of age. Neonatal brain dynamics is assessed using a multilayer network model. Network dynamics decreases globally but increases in both modularity and diversity with development. Regionally, module switching decreases with development primarily in the lateral precentral gyrus, medial temporal lobe, and subcortical areas, with a higher growth rate in primary regions than in association regions. Support vector regression reveals that neonatal connectome dynamics is predictive of individual cognitive and language abilities at 2  years of age. Our findings highlight network-level neural substrates underlying early cognitive development.


Brain , Cognition , Connectome , Magnetic Resonance Imaging , Humans , Connectome/methods , Female , Male , Magnetic Resonance Imaging/methods , Cognition/physiology , Infant, Newborn , Brain/growth & development , Brain/diagnostic imaging , Brain/physiology , Child, Preschool , Language Development , Child Development/physiology
9.
Ann Med ; 56(1): 2349190, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738420

BACKGROUND: Our recently developed Coronary Artery Tree description and Lesion EvaluaTion (CatLet) angiographic scoring system is unique in its description of the variability in the coronary anatomy, the degree of stenosis of a diseased coronary artery, and its subtended myocardial territory, and can be utilized to predict clinical outcomes for patients with acute myocardial infarction (AMI) presenting ≤12 h after symptom onset. The current study aimed to assess whether the Clinical CatLet score (CCS), as compared with CatLet score (CS), better predicted clinical outcomes for AMI patients presenting >12 h after symptom onset. METHODS: CS was calculated in 1018 consecutive AMI patients enrolled in a retrospective registry. CCS was calculated by multiplying CS by the ACEF I score (age, creatinine, and left ventricular ejection fraction). Primary endpoint was major adverse cardiac events (MACEs) at 4-year-follow-up, a composite of cardiac death, myocardial infarction, and ischemia-driven revascularization. RESULTS: Over a 4-year follow-up period, both scores were independent predictors of clinical outcomes after adjustment for a broad spectrum of risk factors. Areas-under-the-curve (AUCs) for CS and CCS were 0.72(0.68-0.75) and 0.75(0.71-0.78) for MACEs; 0.68(0.63-0.73) and 0.78(0.74-0.83) for all-cause death; 0.73(0.68-0.79) and 0.83(0.79-0.88) for cardiac death; and 0.69(0.64-0.73) and 0.75(0.7-0.79) for myocardial infarction; and 0.66(0.61-0.7) and 0.63(0.58-0.68) for revascularization, respectively. CCS performed better than CS in terms of the above-mentioned outcome predictions, as confirmed by the net reclassification and integrated discrimination indices. CONCLUSIONS: CCS was better than CS to be able to risk-stratify long-term outcomes in AMI patients presenting >12 h after symptom onset. These findings have indicated that both anatomic and clinical variables should be considered in decision-making on management of patients with AMI presenting later.


Coronary Angiography , Myocardial Infarction , Humans , Male , Female , Myocardial Infarction/diagnosis , Middle Aged , Retrospective Studies , Aged , Time Factors , Prognosis , Severity of Illness Index , Registries/statistics & numerical data , Risk Assessment/methods , Risk Factors , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Follow-Up Studies
10.
Cell Rep ; 43(5): 114168, 2024 May 02.
Article En | MEDLINE | ID: mdl-38700981

The first 1,000 days of human life lay the foundation for brain development and later cognitive growth. However, the developmental rules of the functional connectome during this critical period remain unclear. Using high-resolution, longitudinal, task-free functional magnetic resonance imaging data from 930 scans of 665 infants aged 28 postmenstrual weeks to 3 years, we report the early maturational process of connectome segregation and integration. We show the dominant development of local connections alongside a few global connections, the shift of brain hubs from primary regions to high-order association cortices, the developmental divergence of network segregation and integration along the anterior-posterior axis, the prediction of neurocognitive outcomes, and their associations with gene expression signatures of microstructural development and neuronal metabolic pathways. These findings advance our understanding of the principles of connectome remodeling during early life and its neurobiological underpinnings and have implications for studying typical and atypical development.

11.
Mater Horiz ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38716898

Correction for 'A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration' by Shang Lyu et al., Mater. Horiz., 2024, https://doi.org/10.1039/D3MH01910A.

12.
Biol Psychiatry ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38718879

BACKGROUND: The right MFG has been proposed as a convergence site for the DAN and VAN, regulating both networks and enabling flexible modulation of attention. However, it is unclear if the connections between the right MFG and these networks can predict changes in ADHD symptoms. METHODS: This study used data from the Children School Functions and Brain Development project (n = 713, 56.2% boys). Resting-state fMRI was employed to analyze the connections of the right MFG with DAN/VAN, connectome-based predictive modeling was applied for longitudinal prediction, and ADHD PRS were used for genetic analysis. RESULTS: The ADHD symptoms were associated with the connections between the right MFG and DAN subregion, including the FEF, as well as the VAN subregions, namely the IPL and IFG. Furthermore, these connections of the right MFG with FEF, IPL, and IFG could significantly predict changes in ADHD symptoms over one year and mediate the prediction of ADHD symptom changes by PRS for ADHD. Finally, the validation samples confirmed that the functional connectivity between the right MFG and FEF/IPL in ADHD patients was significantly weaker than that in the typically developing controls, and this difference disappeared after medication. CONCLUSIONS: The connection of right MFG with DAN and VAN can serve as a predictive indicator for changes in ADHD symptoms over the following year, while also mediating the prediction of ADHD symptom changes by PRS for ADHD. These findings hold promise as potential biomarkers for early identification of children at risk of developing ADHD.

13.
Front Public Health ; 12: 1375533, 2024.
Article En | MEDLINE | ID: mdl-38756891

Background: Nasopharyngeal carcinoma (NPC) has an extremely high incidence rate in Southern China, resulting in a severe disease burden for the local population. Current EBV serologic screening is limited by false positives, and there is opportunity to integrate polygenic risk scores for personalized screening which may enhance cost-effectiveness and resource utilization. Methods: A Markov model was developed based on epidemiological and genetic data specific to endemic areas of China, and further compared polygenic risk-stratified screening [subjects with a 10-year absolute risk (AR) greater than a threshold risk underwent EBV serological screening] to age-based screening (EBV serological screening for all subjects). For each initial screening age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69 years), a modeled cohort of 100,000 participants was screened until age 69, and then followed until age 79. Results: Among subjects aged 30 to 54 years, polygenic risk-stratified screening strategies were more cost-effective than age-based screening strategies, and almost comprised the cost-effectiveness efficiency frontier. For men, screening strategies with a 1-year frequency and a 10-year absolute risk (AR) threshold of 0.7% or higher were cost-effective, with an incremental cost-effectiveness ratio (ICER) below the willingness to pay (¥203,810, twice the local per capita GDP). Specifically, the strategies with a 10-year AR threshold of 0.7% or 0.8% are the most cost-effective strategies, with an ICER ranging from ¥159,752 to ¥201,738 compared to lower-cost non-dominated strategies on the cost-effectiveness frontiers. The optimal strategies have a higher probability (29.4-35.8%) of being cost-effective compared to other strategies on the frontier. Additionally, they reduce the need for nasopharyngoscopies by 5.1-27.7% compared to optimal age-based strategies. Likewise, for women aged 30-54 years, the optimal strategy with a 0.3% threshold showed similar results. Among subjects aged 55 to 69 years, age-based screening strategies were more cost-effective for men, while no screening may be preferred for women. Conclusion: Our economic evaluation found that the polygenic risk-stratified screening could improve the cost-effectiveness among individuals aged 30-54, providing valuable guidance for NPC prevention and control policies in endemic areas of China.


Cost-Benefit Analysis , Markov Chains , Nasopharyngeal Carcinoma , Humans , China/epidemiology , Middle Aged , Male , Adult , Female , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/genetics , Aged , Nasopharyngeal Neoplasms/diagnosis , Early Detection of Cancer/economics , Mass Screening/economics , Multifactorial Inheritance , Risk Factors , Risk Assessment
14.
Article En | MEDLINE | ID: mdl-38760320

To meet the diverse needs of humans, smart cloth has become a potential research hotspot to replace traditional cloth. However, it is challenging to manufacture a flexible fabric with multiple functions. Here, we introduce a smart cloth based on liquid metal (LM) conductive fibers. Ga2O3 nanoparticles are obtained through ultrasonic pretreatment. Furthermore, a coordination bond is formed between thiol groups on the surface of protein fibers and Ga2O3 through a scraping method, allowing Ga2O3 particles to be grafted onto the surface of protein fibers in situ. Finally, LM conductive fibers are encapsulated using a photocuring adhesive. In addition, a wearable smart cloth integrated with multiple sensors has been developed based on LM conductive fibers. Users can not only monitor their movement trajectory and the surrounding environment in real time but also have their data supervised by family members through a client, achieving remote and continuous monitoring. The development of this wearable smart cloth provides strong support for future wearable, flexible electronic devices.

15.
EuroIntervention ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38742581

BACKGROUND: The treatment of in-stent restenosis (ISR) after drug-eluting stent (DES) implantation remains challenging in current clinical practice. AIMS: The study was conducted to investigate a novel biolimus-coated balloon (BCB) for the treatment of coronary DES-ISR compared with the best-investigated paclitaxel-coated balloon (PCB). METHODS: This was a prospective, multicentre, randomised, non-inferiority trial comparing a novel BCB with a clinically proven PCB for coronary DES-ISR. The primary endpoint was in-segment late lumen loss (LLL) at 9 months assessed by an independent core laboratory. Baseline and follow-up optical coherence tomography were performed in a prespecified subgroup of patients. RESULTS: A total of 280 patients at 17 centres were randomised to treatment with a BCB (n=140) versus a PCB (n=140). At 9 months, LLL in the BCB group was 0.23±0.37 mm compared to 0.25±0.35 mm in the PCB group; the mean difference between the groups was -0.02 (95% confidence interval [CI]: -0.12 to 0.07) mm; p-value for non-inferiority<0.0001. Similar clinical outcomes were also observed for both groups at 12 months. In the optical coherence tomography substudy, the neointimal area at 9 months was 2.32±1.04 mm2 in the BCB group compared to 2.37±0.93 mm2 in the PCB group; the mean difference between the groups was -0.09 (95% CI: -0.94 to 0.76) mm2; p=non-significant. CONCLUSIONS: This head-to-head comparison of a novel BCB shows similar angiographic outcomes in the treatment of coronary DES-ISR compared with a clinically proven PCB. (ClinicalTrials.gov: NCT04733443).

16.
PLoS One ; 19(5): e0304246, 2024.
Article En | MEDLINE | ID: mdl-38758753

[This corrects the article DOI: 10.1371/journal.pone.0293870.].

17.
Kidney Med ; 6(4): 100801, 2024 Apr.
Article En | MEDLINE | ID: mdl-38562969

The low 1-year patency rate of mature arteriovenous fistulas (AVFs) remains a significant clinical problem. Although vessel properties and biomechanics have been suggested to affect AVF function, understanding their roles in AVF patency failure is challenging owing to the heterogeneity within the patient population, including demographics and comorbid conditions. In this study, we present a case of a patient with 2 upper-arm AVFs with different 1-year patency outcomes and investigate whether they had different histologic features before the AVF creation surgery and biomechanics at 1 day and 6 weeks after the AVF creation surgery using magnetic resonance imaging-based fluid structure interaction simulations. Despite both AVFs being in the upper arm, created <1 year apart by the same surgeon, and having similar preoperative vessel diameters, the 1-year patent AVF had less preoperative intimal collagen and higher wall shear stress 1 day after AVF creation, when compared with the AVF that failed by 1 year. Thus, a low intimal collagen content before the AVF surgery and higher wall shear stress immediately after the AVF creation surgery may be important for long-term AVF patency and should be investigated with larger cohorts.

18.
Quant Imaging Med Surg ; 14(4): 2857-2869, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38617154

Background: Pressure wire fractional flow reserve (FFR) and its derivatives, such as quantitative flow ratio (QFR), computational pressure flow-derived FFR (caFFR), coronary angiography-derived FFR (FFRangio), and computed tomography-derived FFR (FFRCT), have been validated for identifying functionally significant stenosis and guiding revascularization strategy. The limitations of using these methods include the side effects of hyperemia-induced agents, additional costs, and vulnerability to microvascular resistance. FFR is related both to the degree of a stenotic coronary artery and to its subtended myocardial territory. Coronary Artery Tree Description and Lesion Evaluation (CatLet) score (also known as Hexu) is a product of the degree of a stenosis and the weighting of the affected coronary artery (myocardial territory). Hence, we hypothesized that the CatLet score could predict hemodynamically significant coronary stenosis. Methods: We retrospectively enrolled consecutive patients with stable coronary artery disease. They attended Sichuan Science City Hospital with at least one lesion of 50-90% diameter stenosis in a coronary artery of 2 mm or larger. FFR measurement was obtained during invasive coronary angiography. The CatLet score was obtained by multiplying a fixed value of 2.0 (for non-occlusive lesions) and the weight of the affected coronary artery. The primary endpoint was the CatLet score's diagnostic accuracy in identifying hemodynamically significant coronary stenosis, with a pressure wire FFR of ≤0.80 being used as reference. Results: We analyzed the FFR and CatLet scores from 206 vessels in 175 patients with stable coronary disease and intermediate coronary lesions. The per-vessel analysis revealed an overall good correlation between the CatLet score and the FFR [r=-0.61; 95% confidence interval (95% CI): -0.69 to -0.52; P<0.01]. We also noted a significant CatLet score-FFR correlation for each of the left anterior descending artery (LAD), left circumflex (LCX), and right coronary artery (RCA). With a CatLet score ≥10 as a predictor of FFR ≤0.80, the overall diagnostic accuracy included a sensitivity of 78.80% (95% CI: 67.00-87.90%), a specificity of 85.00% (95% CI: 78.00-90.50%), a positive likelihood ratio of 5.25, a negative likelihood ratio of 0.25, and an area under the curve of 0.90 (95% CI: 0.85-0.94). Equivalent vessel-specific results were also achieved for each of the LAD, LCX, and RCA. Conclusions: The CatLet score, solely based on visual estimation of the results of coronary angiography, demonstrated good diagnostic performance with respect to myocardial ischemia. Its clinical values in guiding revascularization warrant further investigation.

19.
ACS Appl Mater Interfaces ; 16(15): 19175-19183, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38573052

Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.

20.
Front Plant Sci ; 15: 1393458, 2024.
Article En | MEDLINE | ID: mdl-38606077

Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.

...