Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Environ Sci (China) ; 150: 532-544, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306426

RESUMEN

T-2 toxin, an omnipresent environmental contaminant, poses a serious risk to the health of humans and animals due to its pronounced cardiotoxicity. This study aimed to elucidate the molecular mechanism of cardiac tissue damage by T-2 toxin. Twenty-four male Sprague-Dawley rats were orally administered T-2 toxin through gavage for 12 weeks at the dose of 0, 10, and 100 nanograms per gram body weight per day (ng/(g·day)), respectively. Morphological, pathological, and ultrastructural alterations in cardiac tissue were meticulously examined. Non-targeted metabolomics analysis was employed to analyze alterations in cardiac metabolites. The expression of the Sirt3/FoxO3α/MnSOD signaling pathway and the level of oxidative stress markers were detected. The results showed that exposure to T-2 toxin elicited myocardial tissue disorders, interstitial hemorrhage, capillary dilation, and fibrotic damage. Mitochondria were markedly impaired, including swelling, fusion, matrix degradation, and membrane damage. Metabonomics analysis unveiled that T-2 toxin could cause alterations in cardiac metabolic profiles as well as in the Sirt3/FoxO3α/MnSOD signaling pathway. T-2 toxin could inhibit the expressions of the signaling pathway and elevate the level of oxidative stress. In conclusion, the T-2 toxin probably induces cardiac fibrotic impairment by affecting amino acid and choline metabolism as well as up-regulating oxidative stress mediated by the Sirt3/FoxO3α/MnSOD signaling pathway. This study is expected to provide targets for preventing and treating T-2 toxin-induced cardiac fibrotic injury.


Asunto(s)
Proteína Forkhead Box O3 , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Superóxido Dismutasa , Toxina T-2 , Animales , Toxina T-2/toxicidad , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Masculino , Proteína Forkhead Box O3/metabolismo , Superóxido Dismutasa/metabolismo , Fibrosis , Enfermedades Metabólicas/inducido químicamente , Regulación hacia Arriba/efectos de los fármacos , Sirtuina 3/metabolismo , Miocardio/patología , Miocardio/metabolismo
2.
Clin Microbiol Rev ; : e0013124, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291997

RESUMEN

SUMMARYSARS-CoV-2 can not only cause respiratory symptoms but also lead to neurological complications. Research has shown that more than 30% of SARS-CoV-2 patients present neurologic symptoms during COVID-19 (A. Pezzini and A. Padovani, Nat Rev Neurol 16:636-644, 2020, https://doi.org/10.1038/s41582-020-0398-3). Increasing evidence suggests that SARS-CoV-2 can invade both the central nervous system (CNS) (M.S. Xydakis, M.W. Albers, E.H. Holbrook, et al. Lancet Neurol 20: 753-761, 2021 https://doi.org/10.1016/S1474-4422(21)00182-4 ) and the peripheral nervous system (PNS) (M.N. Soares, M. Eggelbusch, E. Naddaf, et al. J Cachexia Sarcopenia Muscle 13:11-22, 2022, https://doi.org/10.1002/jcsm.12896), resulting in a variety of neurological disorders. This review summarized the CNS complications caused by SARS-CoV-2 infection, including encephalopathy, neurodegenerative diseases, and delirium. Additionally, some PNS disorders such as skeletal muscle damage and inflammation, anosmia, smell or taste impairment, myasthenia gravis, Guillain-Barré syndrome, ICU-acquired weakness, and post-acute sequelae of COVID-19 were described. Furthermore, the mechanisms underlying SARS-CoV-2-induced neurological disorders were also discussed, including entering the brain through retrograde neuronal or hematogenous routes, disrupting the normal function of the CNS through cytokine storms, inducing cerebral ischemia or hypoxia, thus leading to neurological complications. Moreover, an overview of long-COVID-19 symptoms is provided, along with some recommendations for care and therapeutic approaches of COVID-19 patients experiencing neurological complications.

3.
Phys Rev E ; 110(2-1): 024210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39294978

RESUMEN

This research investigates the impact of dynamic, time-varying interactions on cooperative behavior in social dilemmas. Traditional research has focused on deterministic rules governing pairwise interactions, yet the impact of interaction frequency and synchronization in groups on cooperation remains underexplored. Addressing this gap, our work introduces two temporal interaction mechanisms to model the stochastic or periodic participation of individuals in public goods games, acknowledging real-life variances due to exogenous temporal factors and geographical time differences. We consider that the interaction state significantly influences both game payoff calculations and the strategy updating process, offering new insights into the emergence and sustainability of cooperation. Our results indicate that maximum game participation frequency is suboptimal under a stochastic interaction mechanism. Instead, an intermediate activation probability maximizes cooperation, suggesting a vital balance between interaction frequency and inactivity security. Furthermore, local synchronization of interactions within specific areas is shown to be beneficial, as time differences hinder the spread of cross-structures but promote the formation of dense cooperative clusters with smoother boundaries. We also note that stronger clustering in networks, larger group sizes, and lower noise increase cooperation. This research contributes to understanding the role of node-based temporality and probabilistic interactions in social dilemmas, offering insights into fostering cooperation.

4.
Water Res ; 266: 122347, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39216127

RESUMEN

Phytoremediation is an effective solution to treat pollution with antibiotic compounds in aquatic environments; however, the underlying mechanisms for plants to cope with antibiotic pollutants are obscure. Here we used cell suspension culture to investigate the distribution and transformation of ciprofloxacin (CIP) in common reed (Phragmites australis) plants, as well as the accompanying phenotypic and metabolic responses of plants. By means of radioactive isotope labelling, we found that in total 68 % of CIP was transformed via intracellular Phase I transformation (reduction and methylation), Phase Ⅱ conjugation (glycosylation), and Phase Ⅲ compartmentalization (cell-bound residue formation mainly in cell walls, 23 %). The reduction and glycosylation products were secreted by the cells. To mitigate stress induced by CIP and its transformation products, the cells activated the defense system by up-regulating both intra- and extra-cellular antioxidant metabolites (e.g., catechin, l-cystine, and dehydroascorbic acid), anti-C/N metabolism disorder metabolites (e.g., succinic acid), secreting signaling (e.g., nicotinic acid), and anti-stress (e.g., allantoin) metabolites. Notably, the metabolic reprogramming could be involved in the CIP transformation process (e.g., glycosylation). Our findings reveal the strategy of wetland plants to cope with the stress from CIP by transforming the xenobiotic compound and reprogramming metabolism, and provide novel insights into the fate of antibiotics and plant defense mechanisms during phytoremediation.

5.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2120-2135, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044579

RESUMEN

Antibiotics as emerging pollutants are frequently detected in surface water, raising concerns about the associated risk of antibiotic resistance genes (ARGs). Despite the widespread apprehension, there are still research gaps in the occurrence of antibiotic pollution in surface water and the associated ecological risks to aquatic organisms in China. Here, we established a dataset of antibiotic pollution in surface water in China during 2018-2022, which encompassed 3 368 concentration values of 128 antibiotics reported in 124 articles. Our analysis showed that antibiotic concentrations were predominantly in the ng/L-µg/L range, reaching up to 26 µg/L. Notably, sulfonamides (e.g., sulfamethoxazole) and quinolones (e.g., ciprofloxacin) were frequently reported at high concentrations. The pollution degree of antibiotics represented by sulfamethoxazole, ciprofloxacin, roxithromycin, and tetracycline exhibited no significant variation across different years but was lower in summer than that in spring and autumn. Additionally, distinct spatial distribution characteristics of the pollution were observed. According to calculation results of the aquatic ecological risk assessment model and the weighted frequency, we proposed a list of priority antibiotics including clarithromycin, erythromycin, sulfamethoxazole, ofloxacin, and oxytetracycline in surface water. Last but not least, this study points out the deficiencies in current research on the occurrence and ecological risks of antibiotics in surface water of China and provides viable screening strategies and monitoring recommendations in this context.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Antibacterianos/efectos adversos , Antibacterianos/análisis , Medición de Riesgo , Monitoreo del Ambiente , Sulfametoxazol/análisis , Agua Dulce , Ciprofloxacina/análisis , Estaciones del Año , Eritromicina/análisis , Claritromicina/efectos adversos , Farmacorresistencia Microbiana/genética , Sulfonamidas/análisis , Oxitetraciclina/análisis
6.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026723

RESUMEN

F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.

7.
BMC Infect Dis ; 24(1): 550, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824508

RESUMEN

BACKGROUND: Influenza A virus infections can occur in multiple species. Eurasian avian-like swine influenza A (H1N1) viruses (EAS-H1N1) are predominant in swine and occasionally infect humans. A Eurasian avian-like swine influenza A (H1N1) virus was isolated from a boy who was suffering from fever; this strain was designated A/Shandong-binzhou/01/2021 (H1N1). The aims of this study were to investigate the characteristics of this virus and to draw attention to the need for surveillance of influenza virus infection in swine and humans. METHODS: Throat-swab specimens were collected and subjected to real-time fluorescent quantitative polymerase chain reaction (RT‒PCR). Positive clinical specimens were inoculated onto Madin-Darby canine kidney (MDCK) cells to isolate the virus, which was confirmed by a haemagglutination assay. Then, whole-genome sequencing was carried out using an Illumina MiSeq platform, and phylogenetic analysis was performed with MEGA X software. RESULTS: RT‒PCR revealed that the throat-swab specimens were positive for EAS-H1N1, and the virus was subsequently successfully isolated from MDCK cells; this strain was named A/Shandong-binzhou/01/2021 (H1N1). Whole-genome sequencing and phylogenetic analysis revealed that A/Shandong-binzhou/01/2021 (H1N1) is a novel triple-reassortant EAS-H1N1 lineage that contains gene segments from EAS-H1N1 (HA and NA), triple-reassortant swine influenza H1N2 virus (NS) and A(H1N1) pdm09 viruses (PB2, PB1, PA, NP and MP). CONCLUSIONS: The isolation and analysis of the A/Shandong-binzhou/01/2021 (H1N1) virus provide further evidence that EAS-H1N1 poses a threat to human health, and greater attention should be given to the surveillance of influenza virus infections in swine and humans.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Filogenia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/clasificación , China/epidemiología , Humanos , Masculino , Animales , Gripe Humana/virología , Gripe Humana/epidemiología , Perros , Células de Riñón Canino Madin Darby , Niño , Porcinos , Secuenciación Completa del Genoma , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/epidemiología , Genoma Viral
8.
Biomed Opt Express ; 15(5): 3094-3111, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855698

RESUMEN

Two-photon excited fluorescence (TPEF) is a powerful technique that enables the examination of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle. Although previous intensity-based TPEF studies in non-human primates have successfully imaged several classes of retinal cells and elucidated aspects of both rod and cone photoreceptor function, fluorescence lifetime imaging (FLIM) of the retinal cells under light-dark visual cycle has yet to be fully exploited. Here we demonstrate a FLIM assay of photoreceptors and retinal pigment epithelium (RPE) that reveals key insights into retinal physiology and adaptation. We found that photoreceptor fluorescence lifetimes increase and decrease in sync with light and dark exposure, respectively. This is likely due to changes in all-trans-retinol and all-trans-retinal levels in the outer segments, mediated by phototransduction and visual cycle activity. During light exposure, RPE fluorescence lifetime was observed to increase steadily over time, as a result of all-trans-retinol accumulation during the visual cycle and decreasing metabolism caused by the lack of normal perfusion of the sample. Our system can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes under different conditions of light and dark exposure.

9.
Osteoarthritis Cartilage ; 32(10): 1283-1294, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815737

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.


Asunto(s)
Autofagia , Condrocitos , Sulfatos de Condroitina , Enfermedad de Kashin-Beck , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Toxina T-2 , Serina-Treonina Quinasas TOR , Toxina T-2/toxicidad , Autofagia/efectos de los fármacos , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sulfatos de Condroitina/farmacología , Selenio/farmacología , Línea Celular
10.
Environ Sci Pollut Res Int ; 31(26): 38142-38152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789711

RESUMEN

While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.


Asunto(s)
Arsénico , ADN Mitocondrial , Humanos , Femenino , Embarazo , Recién Nacido , Adulto , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Cohorte de Nacimiento , China , Exposición Materna , Sangre Fetal/química
11.
Cancer Lett ; 592: 216906, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38649108

RESUMEN

Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.


Asunto(s)
Neoplasias Óseas , Células Supresoras de Origen Mieloide , Animales , Humanos , Neoplasias Óseas/secundario , Neoplasias Óseas/terapia , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral
12.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674100

RESUMEN

The accurate prediction of adverse drug reactions (ADRs) is essential for comprehensive drug safety evaluation. Pre-trained deep chemical language models have emerged as powerful tools capable of automatically learning molecular structural features from large-scale datasets, showing promising capabilities for the downstream prediction of molecular properties. However, the performance of pre-trained chemical language models in predicting ADRs, especially idiosyncratic ADRs induced by marketed drugs, remains largely unexplored. In this study, we propose MoLFormer-XL, a pre-trained model for encoding molecular features from canonical SMILES, in conjunction with a CNN-based model to predict drug-induced QT interval prolongation (DIQT), drug-induced teratogenicity (DIT), and drug-induced rhabdomyolysis (DIR). Our results demonstrate that the proposed model outperforms conventional models applied in previous studies for predicting DIQT, DIT, and DIR. Notably, an analysis of the learned linear attention maps highlights amines, alcohol, ethers, and aromatic halogen compounds as strongly associated with the three types of ADRs. These findings hold promise for enhancing drug discovery pipelines and reducing the drug attrition rate due to safety concerns.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Aprendizaje Profundo , Modelos Químicos , Rabdomiólisis/inducido químicamente , Síndrome de QT Prolongado/inducido químicamente
13.
Sci Rep ; 14(1): 7028, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528062

RESUMEN

Accurate indel calling plays an important role in precision medicine. A benchmarking indel set is essential for thoroughly evaluating the indel calling performance of bioinformatics pipelines. A reference sample with a set of known-positive variants was developed in the FDA-led Sequencing Quality Control Phase 2 (SEQC2) project, but the known indels in the known-positive set were limited. This project sought to provide an enriched set of known indels that would be more translationally relevant by focusing on additional cancer related regions. A thorough manual review process completed by 42 reviewers, two advisors, and a judging panel of three researchers significantly enriched the known indel set by an additional 516 indels. The extended benchmarking indel set has a large range of variant allele frequencies (VAFs), with 87% of them having a VAF below 20% in reference Sample A. The reference Sample A and the indel set can be used for comprehensive benchmarking of indel calling across a wider range of VAF values in the lower range. Indel length was also variable, but the majority were under 10 base pairs (bps). Most of the indels were within coding regions, with the remainder in the gene regulatory regions. Although high confidence can be derived from the robust study design and meticulous human review, this extensive indel set has not undergone orthogonal validation. The extended benchmarking indel set, along with the indels in the previously published known-positive set, was the truth set used to benchmark indel calling pipelines in a community challenge hosted on the precisionFDA platform. This benchmarking indel set and reference samples can be utilized for a comprehensive evaluation of indel calling pipelines. Additionally, the insights and solutions obtained during the manual review process can aid in improving the performance of these pipelines.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biología Computacional , Control de Calidad , Mutación INDEL , Polimorfismo de Nucleótido Simple
14.
J Hazard Mater ; 469: 133906, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430590

RESUMEN

The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.


Asunto(s)
Contaminantes Ambientales , Microbiota , Contaminantes del Suelo , Contaminantes Ambientales/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Fenoles/metabolismo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
15.
Chemosphere ; 355: 141788, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548088

RESUMEN

N/S co-doping has emerged as a prevailing strategy for carbon-based adsorbents to facilitate the antibiotic removal efficiency. Nevertheless, the underlying interplay among N, S, and their adjacent vacancy defects remains overlooked. Herein, we present a novel in situ strategy for fabricating pyridinic-N dominated and S dual-doped porous carbon adsorbent with rich vacancy defects (VNSC). The experimental results revealed that N (acting as the electron donor) and S (acting as the electron acceptor) form an internal electric field (IEF), with a stronger IEF generated between pyridinic-N and S, while their adjacent vacancy defects activate carbon π electrons, thus enhancing the charge transfer of the IEF. Density functional theory (DFT) calculations further demonstrated that the rich charge transfer in the IEF facilitated the π-π electron donor-acceptor (EDA) interaction between VNSC and tetracycline (TC) as well as norfloxacin (NOR), and thus is the key to adsorption performance of VNSC. Consequently, VNSC exhibited high adsorption capacities toward TC (573.1 mg g-1) and NOR (517.0 mg g-1), and its potential for environmental applications was demonstrated by interference, environmentally relevant concentrations, fixed-bed column, and regeneration tests. This work discloses the natures of adsorption capacity for N/S dual-doped carbon-based materials for antibiotics.


Asunto(s)
Antibacterianos , Norfloxacino , Porosidad , Tetraciclina , Adsorción , Carbono , Oxidantes
16.
Nat Nanotechnol ; 19(6): 810-817, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351231

RESUMEN

Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion. Notably, a 90 nm red shift in emission is observed upon reporter cleavage, a result unattainable by a simple donor-quencher FRET reporter. Electrospray ionization-mass spectrometry results suggest that the stoichiometric change of the silver nanoclusters from Ag13 (in the intact DNA host) to Ag10 (in the fragments) is probably responsible for the emission colour change observed after reporter digestion. Our results demonstrate that DNA-templated silver nanocluster probes can be versatile reporters for detecting nuclease activities and provide insights into the interactions between nucleases and metallo-DNA nanomaterials.


Asunto(s)
ADN , Transferencia Resonante de Energía de Fluorescencia , Plata , Transferencia Resonante de Energía de Fluorescencia/métodos , Plata/química , ADN/química , ADN/metabolismo , Fluorescencia , Nanopartículas del Metal/química , Color , Nanoestructuras/química
17.
Water Res ; 254: 121350, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402752

RESUMEN

Redox condition is an important controlling factor for contaminant removal in constructed wetlands; however, the redox-sensitivity of antibiotic removal in wetland sediments under controlled conditions with specific electron acceptors remains unclear. Here, using a 14C radioactive tracer, we explored fate of sulfamethoxazole (SMX) in a wetland sediment slurry under oxic, nitrate-reducing, iron-reducing, and methanogenic conditions. In the sterile treatment, unlike the comparable SMX dissipation from the water phase under four redox conditions, non-extractable residues (NERs) of SMX was highest formed in the sediment under oxic condition, mainly in sequestered and ester/amide-linked forms. Microorganisms markedly promoted SMX transformation in the slurry. The dissipation rate of SMX and its transformation products (TPs) followed the order: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions, being consistent with the dynamics of microbial community in the sediment, where microbial diversity was greater and networks connectivity linking dominant bacteria to SMX transformation were more complex under oxic and iron-reducing conditions. Kinetic modeling indicated that the transformation trend of SMX and its TPs into the endpoint pool NERs depended on the redox conditions. Addition of wetland plant exudates and sediment dissolved organic matter at environmental concentrations affected neither the abiotic nor the biotic transformation of SMX. Overall, the iron-reducing condition was proven the most favorable and eco-friendly for SMX transformation, as it resulted in a high rate of SMX dissipation from water without an increase in toxicity and subsequent formation of significant stable NERs in sediment. Our study comprehensively revealed the abiotic and biotic transformation processes of SMX under controlled redox conditions and demonstrated iron-reducing condition allowing optimal removal of SMX in constructed wetlands.


Asunto(s)
Sulfametoxazol , Humedales , Sulfametoxazol/química , Nitratos , Antibacterianos , Oxidación-Reducción , Hierro , Compuestos Orgánicos , Agua
18.
J Trace Elem Med Biol ; 83: 127406, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308912

RESUMEN

BACKGROUND: The potential impact of environmental cadmium exposure on the prognosis of patients with rheumatoid arthritis (RA) remains unclear, despite its known association with various adverse health outcomes. METHODS: In this study, a total of 1285 RA patients were included in the National Health and Nutrition Examination Survey (NHANES) conducted between 2003 and 2016. The Cox regression model was employed to investigate the relationship between blood cadmium levels and the risk of all-cause mortality in RA patients. RESULTS: During a mean follow-up duration of 105.9 months, 341 patient deaths were recorded. After adjusting for multiple factors, elevated blood cadmium was strongly correlated with an increased risk of all-cause mortality in patients with RA. With one unit rise in natural logarithm-transformed blood cadmium concentrations, the risk of patient death increased by 107%. The adjusted hazard ratios for each quartile of blood cadmium demonstrated a significant upward trend (P < 0.001). A linear dose-response relationship of blood cadmium concentrations with all-cause mortality was also distinctive (P < 0.001). Consistent findings were ascertained when conducting stratified analyses by age, gender, race, education level, body mass index, smoking status, and drinking status. CONCLUSIONS: Elevated blood cadmium levels may serve as a risk factor for increased death risk in RA patients.


Asunto(s)
Artritis Reumatoide , Cadmio , Adulto , Humanos , Encuestas Nutricionales , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos
19.
Opt Express ; 32(3): 3290-3307, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297554

RESUMEN

Multiplexed fluorescence detection has become increasingly important in the fields of biosensing and bioimaging. Although a variety of excitation/detection optical designs and fluorescence unmixing schemes have been proposed to allow for multiplexed imaging, rapid and reliable differentiation and quantification of multiple fluorescent species at each imaging pixel is still challenging. Here we present a pulsed interleaved excitation spectral fluorescence lifetime microscopic (PIE-sFLIM) system that can simultaneously image six fluorescent tags in live cells in a single hyperspectral snapshot. Using an alternating pulsed laser excitation scheme at two different wavelengths and a synchronized 16-channel time-resolved spectral detector, our PIE-sFLIM system can effectively excite multiple fluorophores and collect their emission over a broad spectrum for analysis. Combining our system with the advanced live-cell labeling techniques and the lifetime/spectral phasor analysis, our PIE-sFLIM approach can well unmix the fluorescence of six fluorophores acquired in a single measurement, thus improving the imaging speed in live-specimen investigation.


Asunto(s)
Diagnóstico por Imagen , Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes
20.
Foods ; 13(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338550

RESUMEN

Fermented soy foods can effectively improve the unpleasant odor of soybean and reduce its anti-nutritional factors while forming aromatic and bioactive compounds. However, a differential analysis of characteristic flavor and function among different fermented soy foods has yet to be conducted. In this study, a systematic comparison of different fermented soy foods was performed using E-nose, HS-SMPE-GC×GC-MS, bioactivity validation, and correlation analysis. The results showed that soy sauce and natto flavor profiles significantly differed from other products. Esters and alcohols were the main volatile substances in furu, broad bean paste, douchi, doujiang, and soy sauce, while pyrazine substances were mainly present in natto. Phenylacetaldehyde contributed to the sweet aroma of furu, while 1-octene-3-ol played a crucial role in the flavor formation of broad bean paste. 2,3-Butanediol and ethyl phenylacetate contributed fruity and honey-like aromas to douchi, doujiang, and soy sauce, respectively, while benzaldehyde played a vital role in the flavor synthesis of douchi. All six fermented soy foods demonstrated favorable antioxidative and antibacterial activities, although their efficacy varied significantly. This study lays the foundation for elucidating the mechanisms of flavor and functionality formation in fermented soy foods, which will help in the targeted development and optimization of these products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA