Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 847: 157444, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868376

RESUMEN

Florfenicol has been widely used in the veterinary and aquaculture to control bacterial diseases because of its high efficacy, quick effect, and low cost. The water-sediment system has become an important sink for florfenicol, and the anaerobic environment of lake sediments is favorable for methane (CH4) production. Although antibiotics may impact methanogenesis under anaerobic conditions, the influence of florfenicol on CH4 accumulation in anaerobic water-sediment system remains uncertain. This study evaluated how florfenicol affects CH4 accumulation and the structure of the prokaryotic community in a water-sediment system. Anaerobic systems with different florfenicol concentrations (0, 0.2, 1, 5 and 10 mg/L) were incubated and CH4 accumulation, pH, total organic carbon content, degradation ratio of florfenicol, and structure of the prokaryotic community were monitored. It was found that CH4 accumulation raised in low florfenicol (0.2 and 1 mg/L) systems during the growth period, while CH4 accumulation declined in high florfenicol (5 and 10 mg/L) systems. In the first 13 d, 83.67-99.30 % of florfenicol degraded in different treatments. The addition of florfenicol also influenced the structure of the prokaryotic community of the sediments. Proteobacteria and Chloroflexi were dominant at the phylum level. The dominant taxa at the order level gradually changed from Methanomicrobiales to Methanobacteriales, and finally to Methanosarcinales, indicating the dynamic transformation of methanogens in the reactor. This study reveals the effects of florfenicol on CH4 production under anaerobic conditions and provides a theoretical basis for further research on the underlying mechanisms. The findings also provide some basic data on the impact of new pollutants on the global carbon cycle and greenhouse gas emission.


Asunto(s)
Gases de Efecto Invernadero , Metano , Antibacterianos , Carbono , Sedimentos Geológicos/química , Metano/metabolismo , Tianfenicol/análogos & derivados , Agua
2.
Chemosphere ; 277: 130327, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33784555

RESUMEN

Coagulation is a common method used to remove suspended particulate matter (SPM) from the water supply. SPM has preferable adsorption ability for antibiotics in water; therefore, SPM adsorption and coagulation may be a possible way to remove tetracycline (TC) from water. This study carried out coagulation experiments combining SPM collected from a natural lake at a location with three common coagulants-polyaluminum sulfate, polyaluminum chloride, and polyferric sulfate-under different pH values, exploring the adsorption of TC by SPM, coagulation of SPM with TC, and the primary influencing factors of this process. The maximum removal rate of TC can reach 97.87% with an SPM concentration of 1000 mg/L. Multi-factor analysis of variance showed the importance of various TC removal factors, which were ranked as follows: SPM concentration â‰« initial TC concentration > type of coagulant > pH values. The higher the SPM concentration, the better the TC removal (p < 0.001). Fourier infrared spectroscopy results demonstrated the strong adsorption effect of SPM on TC after being combined with a coagulant, and scanning electron microscopy also indicated that SPM becomes effective nuclei in the coagulation process, which is a possible reason for better TC removal. However, the effluent turbidities under 1000 mg/L SPM concentrations were high without coagulant aid. With the addition of coagulant aid anion polyacrylamide, the TC removal remained unchanged, effluent turbidity significantly reduced, and the TC desorption became low. These results indicate that applying SPM from natural lakes in the coagulation process could potentially remove TC in water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos , Lagos , Material Particulado/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA